411 resultados para 58-443


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major- and trace-element analyses, mineral chemistry, and Sr-Nd isotopic determinations were obtained on representative igneous rocks drilled from the Nankai accretionary complex (Site 808) during Ocean Drilling Program Leg 131. For the first time, the oceanic basement of the subducting plate below an accretionary prism has been reached. The Nankai Trough basement was encountered at a depth of 1289.9 mbsf and a total of 37.1 m of igneous rocks, middle Miocene (15.6 Ma) in age, was penetrated. Two main lithological units have been distinguished from the top downward; sill-like rocks (Unit I: Cores 105, 106, 107) and pillow lavas (Unit II: Core 108). Basalts are predominantly nonvesicular, hypocrystalline, aphyric to slightly phyric with intersertal to intergranular textures. Alteration is generally slight to moderate. All the basaltic rocks are cut by ramifying veins of varying widths. Secondary mineral assemblages (including vein fillings) are typical of submarine alteration and zeolite to low greenschist facies metamorphism. The order of crystallization of primary minerals is: olivine, plagioclase, clinopyroxene. This, together with mineral chemistry, characterized by forsteritic olivine (Fo 84-85), highly anorthitic Plagioclase (up to An 90), and in particular the composition of clinopyroxene, are typical of normal mid-ocean ridge basalts (MORB). In terms of Zr/Y (2.9-3.8) and Zr/Nb (21-58), all the analyzed samples plot in the normal MORB field. The chondrite-normalized REE patterns confirm the close affinity with normal MORB type (LaN/SmN: 0.6-0.8). Note that such magmatism does not reveal any evidence of subduction-related geochemical components. The 87Sr/86Sr isotopic ratios range from 0.70339 in pillow lavas to 0.70317 in the least-altered basalts of sill units (ratios reduced to 0.70265-0.70271 by HC1 2.5 N hot leaching), whereas 143Nd/144Nd ratios are 0.51314-0.51326. These values conform with those of normal MORB. Stratigraphy, petrography, and geochemistry of the basaltic rocks recovered at Site 808 appear very similar to those from the Shikoku Basin basement (particularly Sites 442 and 443, DSDP Leg 58), analogously identified as normal MORB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface samples, mostly from abyssal sediments of the South Atlantic, from parts of the equatorial Atlantic, and of the Antarctic Ocean, were investigated for clay content and clay mineral composition. Maps of relative clay mineral content were compiled, which improve previous maps by showing more details, especially at high latitudes. Large-scale relations regarding the origin and transport paths of detrital clay are revealed. High smectite concentrations are observed in abyssal regions, primarily derived from southernmost South America and from minor sources in Southwest Africa. Near submarine volcanoes of the Antarctic Ocean (South Sandwich, Bouvet Island) smectite contents exhibit distinct maxima, which is ascribed to the weathering of altered basalts and volcanic glasses. The illite distribution can be subdivided into five major zones including two maxima revealing both South African and Antarctic sources. A particularly high amount of Mg- and Fe-rich illites are observed close to East Antarctica. They are derived from biotite-bearing crystalline rocks and transported to the west by the East Antarctic Coastal Current. Chiorite and well-crystallized dioctaedral illite are typical minerals enriched within the Subantarctic and Polarfrontal-Zone but of minor importance off East Antarctica. Kaolinite dominates the clay mineral assemblage at low latitudes, where the continental source rocks (West Africa, Brazil) are mainly affected by intensive chemical weathering. Surprisingly, a slight increase of kaolinite is observed in the Enderby Basin and near the Filchner-Ronne Ice shelf. The investigated area can be subdivided into ten, large-scale clay facies zones with characteristic possible source regions and transport paths. Clay mineral assemblages of the largest part of the South Atlantic, especially of the western basins are dominated by chlorite and illite derived from the Antarctic Peninsula and southernmost South America and supported by advection within the Circumantarctic Deep Water flow. In contrast, the East Antarctic provinces are relatively small. Assemblages of the eastern basins north of 30°S are strongly influenced by African sources, controlled by weathering regimes on land and by a complex interaction of wind, river and deep ocean transport. The strong gradient in clay mineral composition at the Brazilian slope indicate a relatively low contribution of tropically derived assemblages to the western basins.