461 resultados para surface layer
Resumo:
The vertical density gradients in the Nordic Seas are crucial for the preconditioning of the surface water to thermohaline sinking in winter. These gradients can be reconstructed from paired oxygen isotope data in tests of different species of planktonic foraminifera, the isotopic signatures of which represent different calcification depths in the water column. Comparison of d18O values from foraminiferal tests in plankton hauls, sediment traps, and nearby core top samples with the calculated d18Ocalcite profile of the water column revealed species-specific d18O vital effects and the role of bioturbational admixture of subfossil specimens into the surface sediment. On the basis of core top samples obtained along a west-east transect across various hydrographic regions of the Nordic Seas, d18O values of Turborotalita quinqueloba document apparent calcification depths within the pycnocline at 25-75 m water depth. The isotopic signatures of Neogloboquadrina pachyderma (s) reflect water masses near and well below the pycnocline between 70 and 250 m off Norway, where the Atlantic inflow leads to thermal stratification. Here, temperatures in the calcification depth of N. pachyderma (s) differ from sea surface temperature by approximately -2.5°C. In contrast, N. pachyderma (s) calcifies very close to the sea surface (20-50 m) in the Arctic domain of the western Nordic Seas. However, further west N. pachyderma (s) prefers somewhat deeper, more saline water at 70-130 m well below the halocline that confines the low saline East Greenland Current. This implies that the d18O values of N. pachyderma (s) do not fully reflect the freshwater proportion in surface water and that any reconstruction of past meltwater plumes based on d18O is too conservative, because it overestimates sea surface salinity. Minimum d18O differences (<0.2per mil) between N. pachyderma (s) and T. quinqueloba may serve as proxy for sea regions with dominant haline and absent thermal stratification, whereas thermal stratification leads to d18O differences of >0.4 to >1.5per mil.
Resumo:
The work in this sub-project of ESOP focuses on the advective and convective transforma-tion of water masses in the Greenland Sea and its neighbouring areas. It includes observational work on the sub-mesoscale and analysis of hydrographic data up to the gyre-scale. Observations of active convective plumes were made with a towed chain equipped with up to 80 CTD sensors, giving a horizontal and vertical resolution of the hydrographic fields of a few metres. The observed scales of the penetrative convective plumes compare well with those given by theory. On the mesoscale the structure of homogeneous eddies formed as a result of deep convection was observed and the associated mixing and renewal of the intermediate layers quantified. The relative importance and efficiency of thermal and haline penetrative convection in relation to the surface boundary conditions (heat and salt fluxes and ice cover) and the ambient stratification are studied using the multi year time series of hydro-graphic data in the central Greenland Sea. The modification of the water column of the Greenland Sea gyre through advection from and mixing with water at its rim is assessed on longer time scales. The relative contributions are quantified using modern water mass analysis methods based on inverse techniques. Likewise the convective renewal and the spreading of the Arctic Intermediate Water from its formation area is quantified. The aim is to budget the heat and salt content of the water column, in particular of the low salinity surface layer, and to relate its seasonal and interannual variability to the lateral fluxes and the fluxes at the air-sea-ice interface. This will allow to estimate residence times for the different layers of the Greenland Sea gyre, a quantity important for the description of the Polar Ocean carbon cycle.
Resumo:
A complex of mineralogical techniques used in studies of near-surface layer hemipelagic sediments indicates that disordered todorokite and hexagonal birnessite dominate in manganese micronodules, whereas hexagonal birnessite is the main phase of micronodules from miopelagic sediments. Content of todorokite increases downward through the miopelagic sedimentary sequence; this can be reasonably explained by transformations of some other manganese minerals to todorokite. Occurrence of several manganese minerals in studied samples may reflect temporal and lateral variations in C_org content in sediments and respective local fluctuations in environmental conditions (pH, Eh, geochemical activity of Mn, etc.). Todorokite may have formed under the most anoxic conditions near the water-sediment interface.
Resumo:
Two gravity cores retrieved off NW Africa at the border of arid and subtropical environments (GeoB 13602-1 and GeoB 13601-4) were analyzed to extract records of Late Quaternary climate change and sediment export. We apply End Member (EM) unmixing to 350 acquisition curves of isothermal remanent magnetization (IRM). Our approach enables to discriminate rock magnetic signatures of aeolian and fluvial material, to determine biomineralization and reductive diagenesis. Based on the occurrence of pedogenically formed magnetic minerals in the fluvial and aeolian EMs, we can infer that goethite formed in favor to hematite in more humid climate zones. The diagenetic EM dominates in the lower parts of the cores and within a thin near-surface layer probably representing the modern Fe**2+/Fe**3+ redox boundary. Up to 60% of the IRM signal is allocated to a biogenic EM underlining the importance of bacterial magnetite even in siliciclastic sediments. Magnetosomes are found well preserved over most of the record, indicating suboxic conditions. Temporal variations of the aeolian and fluvial EMs appear to faithfully reproduce and support trends of dry and humid conditions on the continent. The proportion of aeolian to fluvial material was dramatically higher during Heinrich Stadials, especially during Heinrich Stadial 1. Dust export from the Arabian-Asian corridor appears to vary contemporaneous to increased dust fluxes on the continental margin of NW Africa emphasizing that melt-water discharge in the North Atlantic had an enormous impact on atmospheric dynamics.
Resumo:
Different parameterizations of subgrid-scale fluxes are utilized in a nonhydrostatic and anelastic mesoscale model to study their influence on simulated Arctic cold air outbreaks. A local closure, a profile closure and two nonlocal closure schemes are applied, including an improved scheme, which is based on other nonlocal closures. It accounts for continuous subgrid-scale fluxes at the top of the surface layer and a continuous Prandtl number with respect to stratification. In the limit of neutral stratification the improved scheme gives eddy diffusivities similar to other parameterizations, whereas for strong unstable stratifications they become much larger and thus turbulent transports are more efficient. It is shown by comparison of model results with observations that the application of simple nonlocal closure schemes results in a more realistic simulation of a convective boundary layer than that of a local or a profile closure scheme. Improvements are due to the nonlocal formulation of the eddy diffusivities and to the inclusion of heat transport, which is independent of local gradients (countergradient transport).
Resumo:
Stable isotopic and micropaleontological studies were made of selected sapropels (organic-rich sediments) deposited in the Mediterranean Sea during the last 5.0 m.y. to determine the processes responsible for their formation. Distinct isotopic and faunal changes occur across sapropels of late Pleistocene, early Pleistocene and latest Pliocene age, while smaller isotopic changes and more stable faunal assemblages are associated with the early and mid-late Pliocene sapropels. The large d18O depletions and euryhaline fauna associated with latest Pliocene-Pleistocene sapropels supports a density stratification model with a low salinity surface layer. In contrast, early Pliocene and mid-late Pliocene sapropels appear to have been formed as the result of sluggish circulation and low oxygen contents in bottom waters of the eastern Mediterranean due to the stable, warm climatic conditions of that time period.
Resumo:
The Red Sea has a special place among the adjacent seas of the world. High evaporation, exclusion of its deep water from contact with the Indian Ocean proper and complete absence of continental drainage may result special conditions of the chemistry of the Red Sea. This paper aims to describe and explain the peculiarity of the hydrochemical situation. The influence of the topography, of the inflow and outflow through the straights of Bab el Mandeb, of the evaporation, of the stability of the water layers, and of the circulation will be studied. An attempt is made to estimate the apparent oxygen ultilisation in order to obtain an indication of the biological activity. A further attempt is made toward the quantitative estimation of the circulation of the nutrients and also to obtain some information about transport, dissolution, and precipitation of calcium carbonate. The basis of these investigations are mainly observations of R. V. "Meteor" during the International Indian Ocean Expedition 1964/65. The determination of dissolved oxygen, dissolved inorganic phosphate, nitrate, nitrite, ammonia, pH, alkalinity, silicate as well as salinity and temperature forms the necessary basis for such an investigation of the chemical conditions. In the first chapter the methods and some modifications for the determination of the chemical properties as applied during the I.I.O.E. cruise of R. V. "Meteor" are described. The new methods, as worked out and tested under sea going conditions during several years by the author, are described in more detail. These are the methods for nitrate, silicate, the automatic determination of dissolved inorganic phosphate and silicate, the automated determination of total phosphorus, the in situ recording of the oxygen tension, and the modification for the determination of ammonia, calcium, and dissolved oxygen. With these revised methods more than 18,000 determinations have been carried out during the Indian Ocean cruise. The complete working up of the chemical data of the Indian Ocean Expedition of R. V. "Meteor" is devided into four sections: Contributions 1) to the Chemistry of the Red Sea and the Inner Gulf of Aden, 2) to the Gulf of Aden and the Somali Coast Region, 3) to the Western Indian Coast Region, and 4) to the Persian Gulf and the Straits of Oman. This paper presents the first contribution. The special hydrographical conditions are discussed. It can be shown, that the increase of salinity in the surface waters from the south to the north of the Red Sea is only to about 30 % due to evaporation. The remaining increase is presumed to be due to the admixture of deep water to the surface layers. A special rate for the consumption of oxygen (0.114 ml/ l/a) is derived for the deep water of the Red Sea at 1500 m. Based upon the distribution of the dissolved oxygen along the axii of the Red Sea, a chematic model for the longitudinal circulation of the Red Sea is constructed. This model should be considered as a first approximation and may explain the special distribution of phosphate, nitrate, and silicate. Based upon the evaluation of the residence time of the deep water a dissolution rate for silicate is estimated as 1 mygat/a. It seems possible to calculate residence times of water masses outside the Red Sea from the silicate content. The increase of silicate and the consumption of oxygen lead to residence times of the water below the thermocine of 30 to 48 years. The distribution of oxygen in the Straits of Bab el Mandeb is described and discussed. The rate of consumption of the oxygen in the outflowing Red Sea water is estimated to 8.5 ml/ l/a. This rather high rate is explained with reference to the special conditions in the outflowing water. The Red Sea water is characterized initially by a relative high content of oxygen and a low content of nutrients. The increase in nutrients and the decrease in the oxygen content is a secondary process of the Red Sea water on its way to the Arabian Sea. Based upon the vertical distribution of the dissolved inorganic phosphate vertical exchange coefficients of 1 - 4 g/cm/sec and vertical current speeds of 10**-5 to 10**-4 cm/sec are calculated for some stations in the Red Sea. The distribution of phosphate, silicate, nitrate, nitrite and ammonia for the Red Sea and the Straits of Bab el Mandeb are discussed. The special circulation is evaluated and the balance of the nutrients is estimated by means of the brutto transport. The nutrient deficit is assumed to be balanced by sporadic inflow of intermediate water from the Gulf of Aden. An example for such an inflow has been observed and is demonstrated. The silicate-salinity relationships are a suitable way for characterizing water masses in the Red Sea. Equations for the calculation of the different components from the carbonate system, the ion activities, and the calcium carbonate saturation are evaluated. The influence of temperature and pressure is taken into account. The carbonate saturation is calculated from the determined concentrations of calcium, alkalinity, and the hydrogen ion activity. Saturation values of 320 % are found for the surface layer and of 100% ± 1 for the deep water. The extraordinary equilibrium conditions may explain the constant Ca/Cl ratio and also the sedimentation of undissolved carbonate skelecons even in greater depths. A main sedimentation rate of 2 * 10**-3cm/year is evaluated from a total sedimentation of 10 * 106 to/a of calcium carbonate in the Red Sea. The appendix contains those data, which are not published in the data volume of the I.I.O.E. expedition of R. V. "Meteor".
Resumo:
From results of analyses of sediment samples collected on a profile crossing the Kuril-Kamchatka Trench distribution of organic D, N. carbohydrates, lipids and humic substances was established, as well as nature of their relationship with amorphous silica and clay fraction. Sum of the main biochemical groups of organic matter in the surface layer of sediments (0-1 cm) from the Kuril-Kamchatka Trench amounts to about 15%; neogenetic forms not encountered in living organisms make up 85% of organic matter. Among such forms 26% comprise humic substances formed during initial stages of polymerization of decomposition products of biochemical macromolecules.
Resumo:
The first comprehensive dataset (492 samples) of dissolved Mn in the Southern Ocean shows extremely low values of 0.04 up to 0.64 nM in the surface waters and a subsurface maximum with an average concentration of 0.31 nM (n=20; S.D.=0.08 nM). The low Mn in surface waters correlates well with the nutrients PO4 and NO3 and moderately well with Si(OH)4 and fluorescence. Furthermore, elevated concentrations of Mn in the surface layer coincide with elevated Fe and light transmission and decreased export (234Th/238U deficiency) and fluorescence. It appears that Mn is a factor of importance in partly explaining the HNLC conditions in the Southern Ocean, in conjunction with significant controls by the combination of Fe limitation and light limitation. No input of Mn from the continental margins was observed. This is ascribed to the protruding continental ice sheet that covers the shelf and shuts down the usual biological production, microbial breakdown and sedimentary geochemical cycling. The low concentrations of Mn in the deep ocean basins (0.07-0.23 nM) were quite uniform, but some elevations were observed. The highest deep concentrations of Mn were observed at the Bouvet Triple Junction region and coincided with high concentrations of Fe and are deemed to be from hydrothermal input. The deep basins on both sides of the ridge were affected by this input. In the deep Weddell Basin the input of Weddell Sea Bottom Water appears to be the source of the slightly elevated concentrations of Mn in this water layer.
Resumo:
Late-summer thickness distributions of large ice floes in the Transpolar Drift between Svalbard and the North Pole in 1991, 1996, 1998, and 2001 are compared. They have been derived from drilling and electromagnetic (EM) sounding. Results show a strong interannual variability, with significantly reduced thickness in 1998 and 2001. The mean thickness decreased by 22.5% from 3.11 m in 1991 to 2.41 m in 2001, and the modal thickness by 22% from 2.50 m in 1991 to 1.95 m in 2001. Since modal thickness represents the thickness of level ice, the observed thinning reflects changes in thermodynamic conditions. Together with additional data from the Laptev Sea obtained in 1993, 1995, and 1996, results are in surprising agreement with recently published thickness anomalies retrieved from satellite radar altimetry for Arctic regions south of 81.5°N. This points to a strong sensitivity of radar altimetry data to level ice thickness.