482 resultados para Jean-Pierre Ronfard


Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the surface ocean equilibrates with rising atmospheric CO2, the pH of surface seawater is decreasing with potentially negative impacts on coral calcification. A critical question is whether corals will be able to adapt or acclimate to these changes in seawater chemistry. We use high precision CT scanning of skeletal cores of Porites astreoides, an important Caribbean reef-building coral, to show that calcification rates decrease significantly along a natural gradient in pH and aragonite saturation (Omega arag). This decrease is accompanied by an increase in skeletal erosion and predation by boring organisms. The degree of sensitivity to reduced ?arag measured on our field corals is consistent with that exhibited by the same species in laboratory CO2 manipulation experiments. We conclude that the Porites corals at our field site were not able to acclimatize enough to prevent the impacts of local ocean acidification on their skeletal growth and development, despite spending their entire lifespan in low pH, low Omega arag seawater.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most studies on the impact of near-future levels of carbon dioxide on fish behaviour report behavioural alterations, wherefore abnormal behaviour has been suggested to be a potential consequence of future ocean acidification and therefore a threat to ocean ecosystems. However, an increasing number of studies show tolerance of fish to increased levels of carbon dioxide. This variation among studies in susceptibility highlights the importance of continued investigation of the possible effects of elevated pCO2. Here, we investigated the impacts of increased levels of carbon dioxide on behaviour using the goldsinny wrasse (Ctenolabrus rupestris), which is a common species in European coastal waters and widely used as cleaner fish to control sea lice infestation in commercial fish farming in Europe. The wrasses were exposed to control water conditions (370 µatm) or elevated pCO2 (995 µatm) for 1 month, during which time behavioural trials were performed. We investigated the possible effects of CO2 on behavioural lateralization, swimming activity, and prey and predator olfactory preferences, all behaviours where disturbances have previously been reported in other fish species after exposure to elevated CO2. Interestingly, we failed to detect effects of carbon dioxide for most behaviours investigated, excluding predator olfactory cue avoidance, where control fish initially avoided predator cue while the high CO2 group was indifferent. The present study therefore shows behavioural tolerance to increased levels of carbon dioxide in the goldsinny wrasse. We also highlight that individual fish can show disturbance in specific behaviours while being apparently unaffected by elevated pCO2 in other behavioural tests. However, using experiments with exposure times measured in weeks to predict possible effects of long-term drivers, such as ocean acidification, has limitations, and the behavioural effects from elevated pCO2 in this experiment cannot be viewed as proof that these fish would show the same reaction after decades of evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emiliania huxleyi, the most abundant coccolithophorid in the oceans, is naturally exposed to solar UV radiation (UVR, 280-400 nm) in addition to photosynthetically active radiation (PAR). We investigated the physiological responses of E. huxleyi to the present day and elevated CO2 (390 vs 1000 µatm; with pH(NBS) 8.20 vs 7.86) under indoor constant PAR and fluctuating solar radiation with or without UVR. Enrichment of CO2 stimulated the production rate of particulate organic carbon (POC) under constant PAR, but led to unchanged POC production under incident fluctuating solar radiation. The production rates of particulate inorganic carbon (PIC) as well as PIC/POC ratios were reduced under the elevated CO2, ocean acidification (OA) condition, regardless of PAR levels, and the presence of UVR. However, moderate levels of UVR increased PIC production rates and PIC/POC ratios. OA treatment interacted with UVR to influence the alga's physiological performance, leading to reduced specific growth rate in the presence of UVA (315-400 nm) and decreased quantum yield, along with enhanced nonphotochemical quenching, with addition of UVB (280-315 nm). The results clearly indicate that UV radiation needs to be invoked as a key stressor when considering the impacts of ocean acidification on E. huxleyi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to assess the effects of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis), specimens were reared in aquarium tanks and exposed to elevated conditions of temperature (+3°C) and acidity (-0.3 pH units) for a period of 10 months. The whole system comprised a factorial experimental design with 4 treatments (3 aquaria per treatment): control, lowered pH, elevated temperature, and lowered pH/elevated temperature. Mortality was estimated on a weekly basis and every 2 months, various biometrical parameters and physiological processes were measured: somatic and shell growth, metabolic rates and body fluid acid-base parameters. Mussels were highly sensitive to warming, with 100% mortality observed under elevated temperature at the end of our experiment in October. Mortality rates increased drastically in summer, when water temperature exceeded 25°C. In contrast, our results suggest that survival of this species will not be affected by a pH decrease of 0.3 in the Mediterranean Sea. Somatic and shell growth did not appear very sensitive to ocean acidification and warming during most of the experiment, but were reduced, after summer, in the lowered pH treatment. This was consistent with measured shell net dissolution and observed loss of periostracum, as well as uncompensated extracellular acidosis in the lowered pH treatment indicating a progressive insufficiency in acid-base regulation capacity. However, based on the present dataset, we cannot elucidate if these decreases in growth and regulation capacities after summer are a consequence of lower pH levels during that period or a consequence of a combined effect of acidification and warming. To summarize, while ocean acidification will potentially contribute to lower growth rates, especially in summer when mussels are exposed to sub-optimal conditions, ocean warming will likely pose more serious threats to Mediterranean mussels in this region in the coming decades.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Behaviour and sensory performance of marine fishes are impaired at CO2 levels projected to occur in the ocean in the next 50-100 years, and there is limited potential for within-generation acclimation to elevated CO2. However, whether fish behaviour can acclimate or adapt to elevated CO2 over multiple generations remains unanswered. We tested for transgenerational acclimation of reef fish olfactory preferences and behavioural lateralization at moderate (656 µatm) and high (912 µatm) end-of-century CO2 projections. Juvenile spiny damselfish, Acanthochromis polyacanthus, from control parents (446 µatm) exhibited an innate avoidance to chemical alarm cue (CAC) when reared in control conditions. In contrast, juveniles lost their innate avoidance of CAC and even became strongly attracted to CAC when reared at elevated CO2 levels. Juveniles from parents maintained at mid-CO2 and high-CO2 levels also lost their innate avoidance of CAC when reared in elevated CO2, demonstrating no capacity for transgenerational acclimation of olfactory responses. Behavioural lateralization was also disrupted for juveniles reared under elevated CO2, regardless of parental conditioning. Our results show minimal potential for transgenerational acclimation in this fish, suggesting that genetic adaptation will be necessary to overcome the effects of ocean acidification on behaviour.

Relevância:

80.00% 80.00%

Publicador: