516 resultados para Ischnura elegans
Resumo:
The Pliocene and Pleistocene periods are known for the onset and consequent amplification of glacial-interglacial cycles. The California margin, situated in the mid-latitudes of the northern Pacific Ocean, is expected to be one of the most interesting regions for Pliocene to Pleistocene paleoceanography because this area occupies a unique position in the ocean-atmosphere system over the region. In this study, we investigated paleoceanographic history, using fossil diatoms, since the Brunhes/Matuyama (B/M) paleomagnetic boundary in which glacial and interglacial periods began to alternate in 100-yr cycles. In Hole 1018A, to a depth corresponding to the beginning of Northern Hemisphere glaciation (late Pliocene), we investigated the responses of the ocean-atmosphere system to stepwise cooling in the California margin. Although the work is still continuing, this data report shows that fossil diatoms of Pliocene and Pleistocene sediments significantly changed both in quality and quantity and implies a possible relationship to global climatic changes.
(Table 1) Relative contribution of main species into zooplankton biomass in White Sea surface waters
Resumo:
During Leg 43, six holes (Sites 382-387) were drilled in the western part of the North Atlantic Ocean; locations of sites are shown in Figure 1. Lower Cretaceous to Quaternary calcareous nannofossils were found in 127 of 189 cores recovered during the leg. The ages and zonal assignments of these fossiliferous cores based upon light-microscopical observation are given in Table 1. An almost continuous succession of nannofossil assemblages of the lower Maestrichtian to upper Paleocene is present at Site 384. A detailed investigation was conducted on samples at this site, and the evolution of approximately 50 species is documented through almost the entire Paleocene epoch.
Resumo:
Calcareous nannofossils were studied from Jurassic and Cretaceous sediments drilled in the western Pacific during Ocean Drilling Program Leg 129. Mesozoic sediments at Sites 800, 801, and 802 are dominated by volcaniclastic turbidites, claystones, porcellanites, and radiolarites. Pelagic limestones are limited to the middle Cretaceous, and a few calcareous claystones were recovered in the Upper Jurassic section at Site 801. We documented the distribution of nannofossils, their total abundance, preservation, and relative species abundance based on semiquantitative and qualitative studies. Preservation of the calcareous nannofloras is poor to moderate, and the total abundance fluctuates from rare to very abundant. Marker species proposed for the middle and Late Cretaceous were recognized, allowing the application of standard nannofossil biozonations. At Site 800 calcareous nannofloras are abundant and moderately preserved in the Aptian-Cenomanian, and nannofossil biostratigraphy constitutes the basic stratigraphic framework for this interval. Radiolarians are the most abundant and persistent group throughout the sequence drilled at Site 801. Long intervals are barren of nannofloras and assemblages are usually characterized by low abundance and poor preservation. Nannofossil biostratigraphy was applied to the upper Aptian-Cenomanian interval and a few marker species were recognized for the late Tithonian. At Site 802 Cretaceous biostratigraphy is mainly based on calcareous nannofossil biozones corroborated by radiolarian and palynomorph events in the late Aptian-Coniacian age interval. A hiatus was indicated between the Santonian and the late Campanian, and another is suspected in the interval between the Cenomanian and the Coniacian.
Resumo:
Qualitative and quantitative mesozooplankton composition was examined on materials collected during an expedition carried out in October 1998 onboard the research icebreaker Akademik Fedorov. At different stations number of species varied from 25 to 33; wet biomass - from 20 to 109 g/m**2. Flux of autochthonous organic matter through plankton communities calculated from data on structural and functional analysis was from 2 to 40 mg C/m**2/day.