944 resultados para Coring


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements were made of the magnetic properties of 13 sediment samples from cores spanning the entire depth of Hole 503A. The principal aim was to make a preliminary assessment of the magnetic fabric of material obtained from hydraulic piston coring (HPC) which, though considerably bioturbated, might retain substantial traces of any depositional alignment of magnetic grains. Earlier measurements on Deep Sea Drilling Project cores (Rees, 1971; Rees and Frederick, 1974; Hailwood and Sayre, 1979) suggested that the improved HPC sampling technique should, other things being equal, provide good magnetic fabric information. The Hole 503A sediments were known from shipboard measurements to possess comparatively strong stable remanence and therefore seemed likely subjects for this assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two newly developed coring devices, the Multi-Autoclave-Corer and the Dynamic Autoclave Piston Corer were deployed in shallow gas hydrate-bearing sediments in the northern Gulf of Mexico during research cruise SO174 (Oct-Nov 2003). For the first time, they enable the retrieval of near-surface sediment cores under ambient pressure. This enables the determination of in situ methane concentrations and amounts of gas hydrate in sediment depths where bottom water temperature and pressure changes most strongly influence gas/hydrate relationships. At seep sites of GC185 (Bush Hill) and the newly discovered sites at GC415, we determined the volume of low-weight hydrocarbons (C1 through C5) from nine pressurized cores via controlled degassing. The resulting in situ methane concentrations vary by two orders of magnitudes between 0.031 and 0.985 mol kg**-1 pore water below the zone of sulfate depletion. This includes dissolved, free, and hydrate-bound CH4. Combined with results from conventional cores, this establishes a variability of methane concentrations in close proximity to seep sites of five orders of magnitude. In total four out of nine pressure cores had CH4 concentrations above equilibrium with gas hydrates. Two of them contain gas hydrate volumes of 15% (GC185) and 18% (GC415) of pore space. The measurements prove that the highest methane concentrations are not necessarily related to the highest advection rates. Brine advection inhibits gas hydrate stability a few centimeters below the sediment surface at the depth of anaerobic oxidation of methane and thus inhibits the storage of enhanced methane volumes. Here, computerized tomography (CT) of the pressure cores detected small amounts of free gas. This finding has major implications for methane distribution, possible consumption, and escape into the bottom water in fluid flow systems related to halokinesis.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract of Bazin et al. (2013): An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale had been developed based on an inverse dating method (Datice), combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousands of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2013), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120-800 ka. In this framework, new measurements of d18Oatm over Marine Isotope Stage (MIS) 11-12 on EDC and a complete d18Oatm record of the TALDICE ice cores permit us to derive additional orbital gas age constraints. The coherency of the different orbitally deduced ages (from d18Oatm, dO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology is now independent of other archives and shows only small differences, most of the time within the original uncertainty range calculated by Datice, when compared with the previous ice core reference age scale EDC3, the Dome F chronology, or using a comparison between speleothems and methane. For instance, the largest deviation between AICC2012 and EDC3 (5.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one. Abstract of Veres et al. (2013): The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120-800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on d15N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before. It is expected that the future contribution of both other long ice core records and other types of chronological constraints to the Datice tool will lead to further refinements in the ice core chronologies beyond the AICC2012 chronology. For the time being however, we recommend that AICC2012 be used as the preferred chronology for the Vostok, EDC, EDML and TALDICE ice core records, both over the last glacial cycle (this study), and beyond (following Bazin et al., 2013). The ages for NGRIP in AICC2012 are virtually identical to those of GICC05 for the last 60.2 ka, whereas the ages beyond are independent of those in GICC05modelext (as in the construction of AICC2012, the GICC05modelext was included only via the background scenarios and not as age markers). As such, where issues of phasing between Antarctic records included in AICC2012 and NGRIP are involved, the NGRIP ages in AICC2012 should therefore be taken to avoid introducing false offsets. However for issues involving only Greenland ice cores, there is not yet a strong basis to recommend superseding GICC05modelext as the recommended age scale for Greenland ice cores.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One hundred thirty-one marker horizons relating to the distinct and traceable layers were described for the Owen Ridge and Oman Margin sites. The correlations incorporated the calculations of true depth, corrected for coring disturbance and gas expansion. Intersite correlation of marker horizons has been improved based on color density data, measured with video densitometer, and oxygen isotope stratigraphic data. Distinct hiatuses were detected by the intersite correlation of the marker horizons in the Owen Ridge. The hiatuses are related to submarine slides induced by increasing gravitational instability for the accumulation of the pelagic sediments on the top of the Owen Ridge. The large amount of sediment supply with variable lithofacies during the glacial stages is represented by layer-bylayer correlation in the Oman Margin. The color density patterns with glacial-interglacial cycles are controlled by the balance of organic carbon content, increasing in the interglacial stages with strong upwelling induced by the southwest monsoon, and flux of terrigenous matter, increasing in the glacial stages. The present distinct climatic cycle relating to the southwest monsoon has been developed since Stage 8, 250 ka. The large amount of sediment supply in the glacial stages can be assumed as fluvial in origin from the humid Arabian Peninsula, relating to the weakened Tropical Easterly Jet, which is induced by the counter-current of the southwest monsoon and maintains the present arid climate in the north Africa and Arabian Peninsula.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of the European Project for Ice Coring in Antarctica (EPICA), a comprehensive glaciological pre-site survey has been carried out on Amundsenisen, Dronning Maud Land, East Antarctica, in the past decade. Within this survey, four intermediate-depth ice cores and 13 snow pits were analyzed for their ionic composition and interpreted with respect to the spatial and temporal variability of volcanic sulphate deposition. The comparison of the non-sea-salt (nss)-sulphate peaks that are related to the well-known eruptions of Pinatubo and Cerro Hudson in AD 1991 revealed sulphate depositions of comparable size (15.8 ± 3.4 kg/km**2) in 11 snow pits. There is a tendency to higher annual concentrations for smaller snow-accumulation rates. The combination of seasonal sodium and annually resolved nss-sulphate records allowed the establishment of a time-scale derived by annual-layer counting over the last 2000 years and thus a detailed chronology of annual volcanic sulphate deposition. Using a robust outlier detection algorithm, 49 volcanic eruptions were identified between AD 165 and 1997. The dating uncertainty is ±3 years between AD 1997 and 1601, around ±5 years between AD 1601 and 1257, and increasing to ±24 years at AD 165, improving the accuracy of the volcanic chronology during the penultimate millennium considerably.