411 resultados para Aerobic incubation at 4°C, gas chromatography
Resumo:
A recently developed technique for determining past sea surface temperatures (SST), based on an analysis of the unsaturation ratio of long chain C37 methyl alkenones produced by Prymnesiophyceae phytoplankton (U37 k' ), has been applied to an upper Quaternary sediment core from the equatorial Atlantic. U37 k' temperature estimates were compared to those obtained from delta18O of the planktonic foraminifer Globigerinoides sacculifer and of planktonic foraminiferal assemblages for the last glacial cycle. The alkenone method showed 1.8°C cooling at the last glacial maximum, about 1/2 to 1/3 of the decrease shown by the isotopic method (6.3°C) and foraminiferal modern analogue technique estimates for the warm season (3.8°C). Warm season foraminiferal assemblage estimates based on transfer functions are out of phase with the other estimates, showing a 1.4°C drop at the last glacial maximum with an additional 0.9°C drop in the deglaciation. Increased alkenone abundances, total organic carbon percentage and foraminiferal accumulation rates in the last glaciation indicate an increase in productivity of as much as 4 times over present day. These changes are thought to be due to increased upwelling caused by enhanced winds during the glaciation. If U37 k' estimates are correct, as much as 50-70% (up to 4.5°C) of estimated delta18O and modern analogue temperature changes in the last glaciation may have been due to changes in thermocline depth, whereas transfer functions seem more strongly influenced by seasonality changes. This indicates these estimates may be influenced as strongly by other factors as they are by SST, which in the equatorial Atlantic was only reduced slightly in the last glaciation.
Resumo:
We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios <35 and d13C-CH4 values of -50.6 per mil. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas-sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO42- and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.
Resumo:
Study of biogeochemical processes in waters and sediments of the Chukchi Sea in August 2004 revealed atypical maxima of biogenic element (N, P, and Si) concentrations and rate of microbial sulfate reduction in the surface layer (0-3 cm) of marine sediments. The C/N/P ratio in organic matter (OM) of this layer does not fit the Redfield-Richards stoichiometric model. Specific features of biogeochemical processes in the sea are likely related to the complex dynamics of water, high primary produc¬tivity (110-1400 mg C/m**2/day), low depth of the basin (<50 m for 60% of the water area), reduced food chain due to low population of zooplankton, high density of zoobenthos (up to 4230 g/m**2), and high activity of microbial processes. Drastic decrease in concentrations of biogenic elements, iodine, total alkalinity, and population of microorganisms beneath the 0-3 cm layer testify to large-scale OM decay at the water-seafloor barrier. Our original experimental data support high annual rate of OM mineralization at the bottom of the Chukchi Sea.