414 resultados para lake sediments
Resumo:
The Barkol Lake, as a closed inland lake, is located at the northeast Xinjiang in northwest China. A combination of geochemical indicators including d18O and d13C of carbonate, TOC, carbonate contents, as well as grain size proxies and magnetic susceptibility of sediments obtained from a newly recovered section at this lake, provides a high-resolution history of climatic change in the past 9400 years. Multi-indicators reflect that Holocene climatic change in the study region generally follows the Westerly Wind pattern of Holocene, and three climatic periods can be identified. Between 9400 and 7500 cal a B.P., climate was characterized by relatively drier and colder condition. From 7500 to 5800 cal a B.P., a relatively warmer and moister climate prevailed, but between 5800 and 3500 cal a B.P., climate shifted towards warmer and drier conditions. A relatively colder and wetter climate prevailed during 3500~1000 cal a B.P., then it changed towards cold and dry between 1000 and 500 cal a B.P.; after 500 cal a B.P., climate changed towards warm and dry conditions again. This study reflects that during the Middle Holocene (from ca 7000 to 3500 cal a B.P.), variations of carbonate d18O of sediments from several lakes in the northern Xinjiang were synchronous with that of Qinghai Lake, where was strongly influenced by the South Asian monsoon; however, after 3500 cal a B.P. this consistency was interrupted, possibly resulting from a re-domination of the Westerly Wind and the retreat of South Asian monsoon in the northern Xinjiang.
Resumo:
The processes of formation of iron-manganese nodules and crusts have been studied on an example of the Eningi-Lampi lake, Central Karelia, where the relationships between the source of the ore, sedimentary materials and areas of their accumulation prove relatively simple and apparent. Nodules and crusts are composed mostly by birnessite, amorphous hydrous ferric oxides and hydro-goethite. They occur, as a rule, on the surface of relatively coarse-grained sediments, at the ground-water interface. Considerably in a lesser extent are found the nodules in the upper part (0ó5 cm) of the red-brown flooded watery mud covering dark-green, black muds. The nucleus of nodules, or the basis of crusts of iron-manganese hydroxides are various, frequently altered, fragments of rocks, sometimes pieces of wood. Distribution of Mn and Fe in sediments and waters of the lake is considered. It is shown that the Mn/Fe ratio decreases considerably in waters, sediments and nodules of the lake while moving off a distance from the source. The main role in the process of formation of iron-manganese nodules belongs to the selective chemosorption interaction (with auto-catalytic oxidation) of component-bearing solutions with active surfaces.
Resumo:
AMS radiocarbon ages have been determined on terrestrial macrofossils selected from the annually laminated sediments of lake Holzmaar (Germany). The radiocarbon chronology of this lake covers the last 12.6 ka. Comparison of the radiocarbon dated varve chronology with tree ring data shows that an additional 878 years have to be added to the varve chronology. The corrected 14C varve chronology of Holzmaar reaches back to ca. 13.8 ka cal. BP and compares favourably with the results from Soppensee (Switzerland) (Hajdas et al., 1993, doi:10.1007/BF00209748). The corrected ages for the onset and the end of the Younger Dryas biozone are 11,940 cal. BP and 11,490 cal. BP, respectively. The ash layer of the Laacher See volcanic eruption is dated at 12,201 ± 224 cal. BP and the Ulmener Tephra layer is dated at 10,904 cal. BP.
Resumo:
Samples of ferromanganese nodules from several localities in Lake Michigan have been analyzed for their minor element content utilizing neutron activation techniques. The thorium and uranium levels in Lake Michigan nodules exhibit marked dissimilarities with marine nodules. The radium content of these freshwater nodules is substantially higher than the reported marine values. The concentrations of barium in the Lake Michigan nodules appear to be abnormally high. Although barium could be present as minute segregations of the mineral barite, patterns obtained using the electron microprobe suggest it is evently dispersed throughout the nodules. The average arsenic content of these freshwater nodules is at least twice as great as that reported for highly oxidized marine sediments. If all this arsenic is dissolved and released into Green Bay as a result of changing environmental conditions (eutrophication), the concentration in the water of Green Bay would be several times the maximum permissible level for drinking water.
Resumo:
Two sediment cores of 70 and 252 cm length were recovered from Hjort Sø, a small lake on Store Koldewey, Northeast Greenland, and studied with a multidisciplinary approach in order to reconstruct the local environmental history and to test the relevance of proxies for paleoenvironmental information. The basal sediments from the longer core are dominated by clastic matter, which was likely deposited during deglaciation of the lake basin. These clastic sediments are overlain by gyttja, which is also present throughout the shorter core. AMS radiocarbon dating was conducted on plant macrofossils of 11 samples from the gyttja in both cores. A reliable chronology was established for both cores, which dated the onset of organic accumulation at 9,500 cal. year BP. The Holocene temperature development, with an early to mid Holocene thermal maximum, is best reflected in the grain-size composition. Nutrient availability was apparently low during the early Holocene and led to low productivity in the lake and its vicinity. From ca. 7,000 cal. year BP, productivity in the lake increased significantly, probably induced by external nutrient input from goose excrements. From this time, micro- and macrofossil remains reflect relatively well the climate history of East Greenland, with a cooling during the middle Holocene, the medieval warming, and the Little Ice Age. The amount of organic matter in the sequence seems to be more affected by lake ice cover or by nutrient supply from the catchment than by temperature changes. The record from Hjort Sø thus reveals the difficulties in interpreting sedimentary records from high arctic regions.
Resumo:
Here we present a detailed multi-proxy record of the climate and environmental evolution at Lake El'gygytgyn, Far East Russian Arctic during the period 430-395 ka covering the marine isotope stage (MIS) 12/11 transition and the thermal maximum of super interglacial MIS 11c. The MIS 12/11 transition at Lake El'gygytgyn is characterized by initial warming followed by a cold reversal implying similarities to the last deglaciation. The thermal maximum of MIS 11c is characterized by full and remarkably stable interglacial conditions with mean temperatures of the warmest month (MTWM) ranging between ca. 10-15 °C; annual precipitation (PANN) ranging between ca. 300-600 mm; strong in-lake productivity coinciding with dark coniferous forests in the catchment; annual disintegration of the lake ice cover; and full mixis of the water column. Such conditions persisted, according to our age model, for ca. 27 ± 8 kyr between ca. 425-398 ka. The Lake El'gygytgyn record closely resembles the climate pattern recorded in Lake Baikal (SE Siberia) sediments and Antarctic ice cores, implying interhemispheric climate connectivity during MIS 11c.