398 resultados para Vastus Medialis Obliquus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High biogenic sedimentation rates in the late Neogene at DSDP Site 590 (1293 m) provide an exceptional opportunity to evaluate late Neogene (late Miocene to latest Pliocene) paleoceanography in waters transitional between temperate and warm-subtropical water masses. Oxygen and carbon isotope analyses and quantitative planktonic foraminiferal data have been used to interpret the late Neogene paleoceanographic evolution of this site. Faunal and isotopic data from Site 590 show a progression of paleoceanographic events between 6.7 and 4.3 Ma, during the latest Miocene and early Pliocene. First, a permanent depletion in both planktonic and benthic foraminiferal d13C, between 6.7 and 6.2 Ma, can be correlated to the globally recognized late Miocene carbon isotope shift. Second, a 0.5 per mil enrichment in benthic foraminiferal d18O between 5.6 and 4.7 Ma in the latest Miocene to early Pliocene corresponds to the latest Miocene oxygen isotopic enrichment at Site 284, located in temperate waters south of Site 590. This enrichment in d18O coincides with a time of cool surface waters, as is suggested by high frequencies of Neogloboquadrina pachyderma and low frequencies of the warmer-water planktonic foraminifers, as well as by an enrichment in planktonic foraminiferal d18O relative to the earlier Miocene. By 4.6 Ma, benthic foraminiferal d18O values become depleted and remain fairly stable until about 3.8 Ma. The early Pliocene (~4.3 to 3.2 Ma) is marked by a significant increase in biogenic sedimentation rates (37.7 to 83.3 m/m.y.). During this time, heaviest values in planktonic foraminiferal d18O are associated with a decrease in the gradient between surface and intermediate-water d13C and d18O, a 1.0 per mil depletion in the d13C of two species of planktonic foraminifers, and a mixture of warm and cool planktonic foraminiferal elements. These data suggest that localized upwelling at the Subtropical Divergence produced an increase in surface-water productivity during the early Pliocene. A two-step enrichment in benthic foraminiferal d18O occurs in the late Pliocene sequence at Site 590. A 0.3 per mil average enrichment at about 3.6 Ma is followed by a 0.5 per mil enrichment at 2.7 Ma. These two events can be correlated with the two-step isotopic enrichment associated with late Pliocene climatic instability and the initiation of Northern Hemisphere glaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new planktic foraminifer transfer function (GSF18) related 5 North Atlantic assemblages to winter and summer sea surface temperature. GSF18, based on recombined and simplified core top census data, preserves most environmental information and reproduces modern North Atlantic conditions with approximately the same accuracy as previous transfer functions, but can be more readily applied to faunal samples ranging in age from Pliocene to Holocene. Transfer function GSF18 has been applied to faunal data from Deep Sea Drilling Project Hole 552A to produce a 2.5 m.y. sea-surface temperature (SST) time series. Estimates show several periods between 2.3 and 4.6 Ma during which mean SST's were both several degrees warmer and several degrees cooler than modern conditions. Between 2.9 and 4.0 Ma SST was generally warmer than modern except for a 250 k.y. interval centered at 3.3 Ma. Maximum SST, with respect to modern conditions, occurred after the cool interval near 3.1 Ma when SST was approximately 3.6° C warmer than present conditions. Comparison of SST estimates with stable isotope data suggest that after peak warming at 3.1 Ma, there was an overall surface water cooling with concomitant build up of global ice volume, culminating in Northern Hemisphere glaciation. This event is also indicated by the presence of ice rafted detritus in 552A sediments at about 2.45 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Pliocene changes in the advection of Mediterranean Outflow Water (MOW) derivates were reconstructed at northeast Atlantic DSDP/ODP sites 548 and 982 and compared to records of WMDW at West Mediterranean Site 978. Neodymium isotope (epsilon-Nd) values more positive than ~10.5/~ 11 reflect diluted MOW derivates that spread almost continuously into the northeast Atlantic from 3.7 to 2.55 Ma, reaching Rockall Plateau Site 982 from 3.63 to 2.75 Ma. From 3.4 to 3.3 Ma average MOW temperature and salinity increased by 2°-4 °C and ~1 psu both at proximal Site 548 and distal Site 982. The rise implies a rise in flow strength, coeval with a long-term rise in both west Mediterranean Sea surface salinity by almost 2 psu and average bottom water salinity (BWS) by ~1 psu, despite inherent uncertainties in BWS estimates. The changes were linked with major Mediterranean aridification and a drop in African monsoon humidity. In contrast to model expectations, the rise in MOW salt discharge after 3.4 Ma did not translate into improved ventilation of North Atlantic Deep Water, since it possibly was too small to significantly influence Atlantic Meridional Overturning Circulation. Right after ~2.95 Ma, with the onset of major Northern Hemisphere Glaciation, long-term average bottom water temperature (BWT) and BWS at Site 548 dropped abruptly by ~5 °C and ~1-2 psu, in contrast to more distal Site 982, where BWT and BWS continued to oscillate at estimates of ~2 °C and 1.5-2.5 psu higher than today until ~2.6 Ma. We relate the small-scale changes both to a reduced MOW flow and to enhanced dilution by warm waters of a strengthened North Atlantic Current temporarily replacing MOW derivates at Rockall Plateau.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Neogene planktonic foraminifera have been examined at Site 310 in the Central North Pacific and their stratigraphic ranges and frequencies are presented here. Blow's (1969) zonation developed for tropical regions has been applied where applicable. Where tropical index taxa are rare or absent in this temperate region, Globorotalia crassaformis, and the evolutionary bioseries G. conoidea - G. conomiozea and G. puncticulata - G. inflata have been found useful for zonal subdivisions. A correlation between stratigraphic ranges and frequency distributions of these species at Site 310 in the Central North Pacific, and Site 284 in the Southwest Pacific indicates that these species are relatively consistent biostratigraphic markers in temperate regions of both the North and South Pacific Oceans. An informal zonation for temperate latitudes of the Southwest Pacific has been established by Kennett (1973) and a similar zonal subdivision can be made at Site 310. Paleoclimatic/paleoceanographic interpretations based on coiling ratios, percent abundance, and phenotypic variations of Neogloboquadrina pachyderma indicate four major cold events during early, middle, and late Pliocene, and early Pleistocene. Faunal correlations of these events with similar events elsewhere in the Northeast and Southwest Pacific which have been paleomagnetically dated indicate the following approximate ages for these cold events: 4.7 Ma, 3.0 Ma, 2.6-1.8 Ma, and 1.2 Ma. Faunal assemblages have been divided into three groups representing cool, intermediate, and warmer water assemblages. Cool water assemblages are dominated by ~60% N. pachyderma; intermediate temperature faunas are dominated by species of Globigerina and Globigerinita and contain between 20% and 30% N. pachyderma. Warmer water assemblages are dominated by species of Globorotalia and contain <10% N. pachyderma. Frequency oscillations within these groups, in addition to paleotemperature parameters evident in N. pachyderma, afford refined paleoclimatic/paleoceanographic interpretations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Neogene planktonic foraminiferal biostratigraphy of DSDP Site 296, Leg 31, reveals this site as an ideal reference section for correlation of Blow's low-latitude zonation with the mid-latitude zonation for temperate faunal assemblages developed in this paper and earlier for DSDP Site 310, Leg 31 (Keller). Abundance of temperate species of Globorotalia (G. inflata, G. puncticulata, G. crassaformis, G. conomiozea) permit correlation with the zonal subdivision developed at Site 310 based on these species. Evolutionary changes within the Globorotalia inflata group also appear to be consistent biostratigraphie markers in mid latitudes; a primitive variety of this species first appears at about 3.3-3.1 Ma, G. inflata praeinflata appears at about 2.6 Ma, and the modern form appears at about 2.2-2.1 Ma. Quantitative analyses of planktonic foraminifera at DSDP Site 296 reveal an inversely reciprocal frequency oscillation between species of Globorotalia and the Globigerina-Globigerinita group. Cool climatic periods are characterized by high frequencies in the Globigerina-Globigerinita group and low frequencies in the Globorotalia group, whereas warm intervals are marked by high frequencies in the Globorotalia group and low frequencies in the Globigerina-Globigerinita group. Five cool paleoclimatic events can be recognized between early Pliocene and late Pleistocene: 4.4 Ma, 3.2-3.1 Ma, 2.4-2.2 Ma, 1.2 Ma, and 0.7 Ma. These paleoclimatic/paleoceanographic events have also been recognized in planktonic foraminifera of the Central and Northeast Pacific DSDP Sites 310 and 173 and also correlate to cold events recognized in oxygen isotope measurements of DSDP Site 310 and in equatorial Pacific cores.