487 resultados para SCLERACTINIAN CORAL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coral reefs are essential to many nations, and are currently in global decline. Although climate models predict decreases in seawater pH (0.3 units) and oxygen saturation (5 percentage points), these are exceeded by the current daily pH and oxygen fluctuations on many reefs (pH 7.8-8.7 and 27-241% O2 saturation). We investigated the effect of oxygen and pH fluctuations on coral calcification in the laboratory using the model species Acropora millepora. Light calcification rates were greatly enhanced (+178%) by increased seawater pH, but only at normoxia; hyperoxia completely negated this positive effect. Dark calcification rates were significantly inhibited (51-75%) at hypoxia, whereas pH had no effect. Our preliminary results suggest that within the current oxygen and pH range, oxygen has substantial control over coral growth, whereas the role of pH is limited. This has implications for reef formation in this era of rapid climate change, which is accompanied by a decrease in seawater oxygen saturation owing to higher water temperatures and coastal eutrophication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and seawater carbonate chemistry. In this study, contemporaneous in situ datasets of seawater carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a framework for investigating the present and future potential impact of rising carbon dioxide (CO2) levels and ocean acidification on coral reef ecosystems in their natural environment. A strong correlation was found between the in situ rates of calcification for the major framework building coral species Diploria labyrinthiformis and the seasonal variability of [CO32-] and aragonite saturation state omega aragonite, rather than other environmental factors such as light and temperature. These field observations provide sufficient data to hypothesize that there is a seasonal "Carbonate Chemistry Coral Reef Ecosystem Feedback" (CREF hypothesis) between the primary components of the reef ecosystem (i.e., scleractinian hard corals and macroalgae) and seawater carbonate chemistry. In early summer, strong net autotrophy from benthic components of the reef system enhance [CO32-] and omega aragonite conditions, and rates of coral calcification due to the photosynthetic uptake of CO2. In late summer, rates of coral calcification are suppressed by release of CO2 from reef metabolism during a period of strong net heterotrophy. It is likely that this seasonal CREF mechanism is present in other tropical reefs although attenuated compared to high-latitude reefs such as Bermuda. Due to lower annual mean surface seawater [CO32-] and omega aragonite in Bermuda compared to tropical regions, we anticipate that Bermuda corals will experience seasonal periods of zero net calcification within the next decade at [CO32-] and omega aragonite thresholds of ~184 micro moles kg-1 and 2.65. However, net autotrophy of the reef during winter and spring (as part of the CREF hypothesis) may delay the onset of zero NEC or decalcification going forward by enhancing [CO32-] and omega aragonite. The Bermuda coral reef is one of the first responders to the negative impacts of ocean acidification, and we estimate that calcification rates for D. labyrinthiformis have declined by >50% compared to pre-industrial times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outbreaks of crown-of-thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo-Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2-4 °C above ambient) and acidification (0.3-0.5 pH units below ambient) in flow-through cross-factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near-future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow-on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for 8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physiological response to individual and combined stressors of elevated temperature and pCO2 were measured over a 24-day period in four Pacific corals and their respective symbionts (Acropora millepora/Symbiodinium C21a, Pocillopora damicornis/Symbiodinium C1c-d-t, Montipora monasteriata/Symbiodinium C15, and Turbinaria reniformis/Symbiodinium trenchii). Multivariate analyses indicated that elevated temperature played a greater role in altering physiological response, with the greatest degree of change occurring within M. monasteriata and T. reniformis. Algal cellular volume, protein, and lipid content all increased for M. monasteriata. Likewise, S. trenchii volume and protein content in T. reniformis also increased with temperature. Despite decreases in maximal photochemical efficiency, few changes in biochemical composition (i.e. lipids, proteins, and carbohydrates) or cellular volume occurred at high temperature in the two thermally sensitive symbionts C21a and C1c-d-t. Intracellular carbonic anhydrase transcript abundance increased with temperature in A. millepora but not in P. damicornis, possibly reflecting differences in host mitigated carbon supply during thermal stress. Importantly, our results show that the host and symbiont response to climate change differs considerably across species and that greater physiological plasticity in response to elevated temperature may be an important strategy distinguishing thermally tolerant vs. thermally sensitive species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global climate change threatens coral growth and reef ecosystem health via ocean warming and ocean acidification (OA). Whereas the negative impacts of these stressors are increasingly well-documented, studies identifying pathways to resilience are still poorly understood. Heterotrophy has been shown to help corals experiencing decreases in growth due to either thermal or OA stress; however, the mechanism by which it mitigates these decreases remains unclear. This study tested the ability of coral heterotrophy to mitigate reductions in growth due to climate change stress in the critically endangered Caribbean coral Acropora cervicornis via changes in feeding rate and lipid content. Corals were either fed or unfed and exposed to elevated temperature (30°C), enriched pCO2 (800 ppm), or both (30°C/800 ppm) as compared to a control (26°C/390 ppm) for 8 weeks. Feeding rate and lipid content both increased in corals experiencing OA vs. present-day conditions, and were significantly correlated. Fed corals were able to maintain ambient growth rates at both elevated temperature and elevated CO2, while unfed corals experienced significant decreases in growth with respect to fed conspecifics. Our results show for the first time that a threatened coral species can buffer OA-reduced calcification by increasing feeding rates and lipid content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification driven by rising levels of CO2 impairs calcification, threatening coral reef growth. Predicting how corals respond to CO2 requires a better understanding of how calcification is controlled. Here we show how spatial variations in the pH of the internal calcifying fluid (pHcf) in coral (Stylophora pistillata) colonies correlates with differential sensitivity of calcification to acidification. Coral apexes had the highest pHcf and experienced the smallest changes in pHcf in response to acidification. Lateral growth was associated with lower pHcf and greater changes with acidification. Calcification showed a pattern similar to pHcf, with lateral growth being more strongly affected by acidification than apical. Regulation of pHcf is therefore spatially variable within a coral and critical to determining the sensitivity of calcification to ocean acidification.