875 resultados para Plagioclase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We detail the petrography and mineralogy of 145 basaltic rocks from the top, middle, and base of flow units identified on shipboard along with associated pyroclastic samples. Our account includes representative electron microprobe analyses of primary and secondary minerals; 28 whole-rock major-oxide analyses; 135 whole-rock analyses each for 21 trace elements; 7 whole-rock rare-earth analyses; and 77 whole-rock X-ray-diffraction analyses. These data show generally similar petrography, mineralogy, and chemistry for the basalts from all four sites; they are typically subalkaline and consanguineous with limited evolution along the tholeiite trend. Limited fractionation is indicated by immobile trace elements; some xenocrystic incorporation from more basic material also occurred. Secondary alteration products indicate early subaerial weathering followed by prolonged interaction with seawater, most likely below 150°C at Holes 552, 553A, and 554A. At Hole 555, greenschist alteration affected the deepest rocks (olivine-dolerite) penetrated, at 250-300°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distinctive, massive to stratified, pale blue volcaniclastics, initially referred to as the "blue tuff," were encountered at all four sites drilled during ODP Leg 127 in the Japan Sea. Detailed vertical sequence analysis, plagioclase chemistry, plagioclase 87Sr/86Sr isotopic composition, and 40Ar/39Ar age dating indicate that thick sequences of the blue tuff are not genetically related. Blue tuffs at Hole 794B were apparently deposited by density flows at ambient temperature. Deposition was penecontemporaneous with a large submarine phreatomagmatic eruption at 14.9 Ma in bathyal or deeper water depths. The blue tuffs at this location comprise mostly reworked hydroclastic glass shards and lesser amounts of plagioclase crystals. Pyrogenic plagioclase has an average An mole% of 18±3. Comparison of blue tuff plagioclase compositions with the composition of plagioclase from acoustic basement at Site 794 suggests that these rocks are not genetically related. As such, the extrapolation of sediment accumulation rate data in conjunction with this more precise age for the blue tuff corroborates previous minimum age estimates of 16.2 Ma for acoustic basement at Site 794. Blue tuffs at Hole 796B were probably deposited at ambient temperatures by downslope slumping and density flow of reworked pyrogenic debris. This debris includes abundant bubble wall glass shards and plagioclase crystals, with variable admixture of volcanic lithic and intrabasinal fragments. Pyrogenic fragments were produced by subaerial or shallow submarine, magmatic eruptions dated at 7.6 Ma. Blue tuffs contain a heterogeneous mixture of unrelated fragments including a mixed population of plagioclase crystals. The average An mole% of the predominant, probable comagmatic, plagioclase population is 30±4. The two sequences of blue tuff studied are distinct in age, mineral composition, and the eruptive origin of pyroclastic fragments. Preliminary 87Sr/86Sr isotopic compositions of plagioclase, however, indicates that blue tuffs at both locations are the product of typical, subduction-related island arc magmatism. Based on the results of this study, there is no justification for stratigraphic correlation of widespread, Miocene, blue to blue-gray bentonitic tuff and tuffaceous sandstones nor the interpretation that these strata are indicative of regional, explosive submarine volcanism genetically related to rifting and formation of the Japan Sea. Rather, these reworked pyroclastic strata of intermediate composition were deposited over a protracted 6-8 m.y. period in association with widespread, subduction-related submarine to subaerial volcanism in the Japan Sea backarc basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Site 1146 (19°27.40'N, 116°16.37'E) was drilled in ~2092 m water depth in a rift basin on the continental slope of the South China Sea. A total of 607 m of sediment was cored in Hole 1146A, and a composite section from three holes extends down to 640 meters composite depth (mcd). Three stratigraphic sedimentary units were recognized at this site: late Pliocene to Pleistocene nannofossil clay (Unit I), middle Miocene to late Pliocene foraminifer and nannofossil clay mixed sediment (Unit II), and early to middle Miocene nannofossil clay (Unit III). This study reports the mineralogy from the late Miocene through early Pleistocene, 150-440 mcd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalts recovered from Hole 504B during ODP Leg 111 are more or less altered, but there is no sign of strong shear stress or widespread penetrative deformation; hence, they retain well their primary (igneous) structures and textures. The effect of alteration is recognized as the partial or total replacement of primary minerals (olivine, clinopyroxene, and plagioclase) by secondary minerals and as the development of secondary minerals in open spaces (e.g., veins, fractures, vugs, or breccia matrix). The secondary minerals include zeolite (laumontite and stilbite), prehnite, chlorite, epidote, Plagioclase (albite and/or oligoclase), amphibole (anthophyllite, cummingtonite, actinolite, and hornblende), sodic augite, sphene, talc, anhydrite, chalcopyrite, pyrite, Fe-Ti oxide, and quartz. Selected secondary minerals from several tens of samples were analyzed by means of an electron-probe microanalyzer; the results are presented along with brief considerations of their compositional features. In terms of the model basaltic system, the following two types of low-variance (three-phase) mineral assemblages were observed: prehnite-epidote-laumontite and prehnite-actinolite-epidote; both include chlorite, albite and/or oligoclase, sphene, and quartz. The mineral parageneses delineated by these low-variance mineral assemblages suggest that the metamorphic grade ranges from the zeolite facies to the prehnite-actinolite facies. The common occurrence of prehnite indicates that greenschist facies conditions were not attained even in the deepest level of Hole 504B, which, in a strict sense, contradicts the previous interpretation that the lower portion of Hole 504B suffered greenschist facies alteration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic data acquired over the eastern shelf and margin of the South Orkney microcontinent, Antarctica, have shown a high-amplitude reflection lying at a sub-bottom two-way traveltime (TWT) of 0.5-0.8 s. There appear to be two causes for the reflection which apply in different parts of the shelf. The more widespread cause of the reflection is a break-up unconformity associated with the opening of Jane Basin to the east. This is clearly seen where reflections in the underlying sequence are discordant. In contrast, in Eotvos Basin and the southeastern part of Bouguer Basin, the high-amplitude reflection in places cuts across bedding and is interpreted to be caused by silica diagenesis. A post-cruise analysis of core samples from Site 696 in Eotvos Basin by X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed the presence of a silica diagenetic front at 520-530 mbsf. The position of the unconformity at this site is uncertain, but probably coincides with a change of detrital input near 548 mbsf. Fluctuations of physical properties related to the depth of the diagenetic front are difficult to separate from those related to the variation of detrital composition over the same depth interval. Correlation of the drilling record with the seismic record is difficult but with a synthetic seismogram it is demonstrated that diagenesis is the probable cause of the high-amplitude reflection. In Bouguer Basin at Site 695 the depth of the high-amplitude reflection was not reached by drilling; however, the reflection is probably also caused by silica diagenesis because of the biogenic silica-rich composition of the sediments cored. The estimated temperatures and ages of the sediments at the depths of the high-amplitude reflections at Sites 695 and 696 compare favorably with similar data from other diagenetic fronts of the world. The high-amplitude reflection in Bouguer Basin is commonly of inverse polarity, possibly caused either by interference between reflections from several closely-spaced reflecting layers, such as chert horizons, or by free gas trapped near the diagenetic front.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalts collected during drilling and diving programs on Serocki Volcano mostly fall within a limited compositional range, and are moderately evolved, normal MORBs with distinctive high MgO contents (averaging 7.60 wt%) and high A1203 concentrations (averaging 16.14 wt% in whole rock samples). However, samples recovered from within the central crater have lower Ti02 and FeO*/MgO, and higher MgO and Al2O3 concentrations, and are most similar to glasses recovered at Site 649 about 45 km to the north. Comparison of the observed geochemical variations with low-pressure experimental work and other samples from the region suggests that the Serocki Volcano and Site 649 data are compatible with crystal-liquid fractionation involving both olivine and early-stage clinopyroxene, as well as plagioclase, and that the sources may be similar even though Sites 648 and 649 are located in different, but adjacent, spreading cells. Consideration of the stratigraphy and morphology of Serocki Volcano suggests that this feature is more properly described as a megatumulus or lava delta, associated with a steeper, conical peak to the southwest. The evolution of Serocki Volcano involved early construction of a marginal rampart of pillows, followed by doming of this feature and the formation of a perched lava pond. Draining of this pond resulted in collapse and the formation of the central crater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leg 76 sampled 31.5 m of basaltic basement at Deep Sea Drilling Project Hole 534A in the Blake-Bahama Basin. The basalts represent a short section of mineralogically uniform, sparsely plagioclase-phyric pillow flows, composed mainly of plagioclase, augitic clinopyroxene, iron-titanium oxides with variable amounts of alteration products (smectite ± carbonate ± quartz). Their major element chemistry is typical of mid-ocean ridge tholeiites and has normative compositions of olivine tholeiites. Mg/(Mg + Fe**2+) ratios range from 0.58 to 0.60, which suggests that these basalts are evolved compared to primitive mantle melts.