490 resultados para Piston pumps
Resumo:
During Leg 92 of the Deep Sea Drilling Project, sediments containing calcareous nannofossils of latest Oligocene to Holocene age were recovered from 14 holes at six sites (597 to 602) along the East Pacific Rise. The combined sections yield a virtually complete record for the region, with a compressed upper Miocene to Pleistocene interval. The nannofossil content of 14 U.S.N.S. Eltanin piston cores from the study area were also examined in order to supplement data generated during Leg 92. Two taxonomically new combinations are presented: Sphenolithus umbellus and Pontosphaera segmenta. Assemblages of calcareous nannofossils juxtaposed in reversed stratigraphic order within the upper Miocene provide strong evidence for downslope transport of sediments along the East Pacific Rise during the Messinian. Narrow bands of dark metalliferous sediment of coccolith Zone CN8b alternate with normal light-colored, in situ, pelagic sequences of Zone CN9b. This may indicate more vigorous bottom current activity between 5.40 and 6.70 Ma.
Resumo:
The formation of Lake Melkoe (64°51'30''N, 175°14'E, altitude 36 m), one of the largest lakes of the Anadyr Lowland, is related to the moraine left by the Tyellakh Glacier, which originated on the Pekul'nei Ridge. The lake (6 km long and 4.4 km wide) extends in the northwestern direction. The Kholmy Priozernye moraine (16 km long along the arc, 1.5 km wide, and 92-103 masl) surrounds the lake in the west and south. The lake coasts are covered by sand with pebbles and shingle. The flat lake bottom dips toward its central part to a depth of 160 cm. In distinction from many other lakes of the Anadyr Lowland, the thickness of the upper layer of water-saturated sediments overlying compact aleurites in Lake Melkoe is only 5-6 cm. Such a peculiarity of the bottom is explained by the large size of the lake, low sedimentation rates, and frequent storms caused by strong winds. Regional and local vegetation corresponds to a mosaic tundra represented by high shrubs Pinus pumila, Duschekia fruticosa , and hummocky Betula - Ericales - Eriophorum communities. Pinus pumila and Alnus form thickets on the banks of the Anadyr River, coasts of lakes, and moraine slopes.
Resumo:
Hemipelagic muds deposited during the past 5.3 cal kyr in the northern Gulf of Mexico (Orca Basin) contain seven intervals punctuated by relatively coarse siliciclastic grain-size peaks, planktonic faunal turnovers, and negative d13C excursions. We believe these episodes represent megaflood deposits reflecting historically unprecedented outfall of North American floodwater and terrigenous mud plumes into the gulf, resulting in collapse of the open-ocean pelagic ecosystem. The deposits record multidecadal episodes of high continental precipitation and large Mississippi River floods at ~4.7, 3.5, 3.0, 2.5, 2.0, 1.2, and 0.3 cal ka (500-1200-year recurrence interval). Variations in tropical plankton frequencies define submillenial warming intervals that culminate in these fluvial episodes. Strengthened tropical currents in the gulf at these times appear to have increased sea surface temperatures and associated flow of moist gulf air to the midwest. Terrestrial paleohydrologic records support the marine evidence for millennial-scale changes in recurrence of large midwest flood episodes.
Resumo:
The upper 38 m of Hole 722B sediments (Owen Ridge, northwest Arabian Sea) was sampled at 20 cm intervals and used to develop records of lithogenic percent, mass accumulation rate, and grain size spanning the past 1 m.y. Over this interval, the lithogenic component of Owen Ridge sediments can be used to infer variability in the strength of Arabian Sea summer monsoon winds (median grain size) and the aridity of surrounding dust source-areas (mass accumulation rate; MAR in g/cm**2/k.y). The lithogenic MAR has strong 100, 41, and 23 k.y. cyclicities and is forced primarily by changes in source-area aridity associated with glacial-interglacial cycles. The lithogenic grain size, on the other hand, exhibits higher frequency variability (23 k.y.) and is forced by the strength of summer monsoon winds which, in turn, are forced by the effective sensible heating of the Indian-Asian landmass and by the availability of latent heat from the Southern Hemisphere Indian Ocean. These forcing mechanisms combine to produce a wind-strength record which has no strong relationship to glacial-interglacial cycles. Discussion of the mechanisms responsible for production of primary Milankovitch cyclicities in lithogenic records from the Owen Ridge is presented elsewhere (Clemens and Prell, 1990, doi:10.1029/PA005i002p00109). Here we examine the 1 m.y. record from Hole 722B focusing on different aspects of the lithogenic components including an abrupt change in the monsoon wind-strength record at 500 k.y., core-to-core reproducibility, comparison with magnetic susceptibility, coherency with a wind-strength record from the Pacific Ocean, and combination frequencies in the wind-strength record. The Hole 722B lithogenic grain-size record shows an abrupt change at 500 k.y. possibly indicating decreased monsoon wind-strength over the interval from 500 k.y. to present. The grain-size decrease appears to be coincident with a loss of spectral power near the 41 k.y. periodicity. However, the grain-size decrease is not paralleled in the Globigerina bulloides upwelling record, an independent record of summer monsoon wind-strength (Prell, this volume). These observations leave us with competing hypotheses possibly involving: (1) a decrease in the sensitivity of monsoon windstrength to obliquity forcing, (2) decoupling of the grain size and G. bulloides records via a decoupling of the nutrient supply from wind-driven upwelling, and/or (3) a change in dust source-area or the patterns of dust transporting winds. Comparison of the lithogenic grain size and weight percent records from Hole 722B with those from a nearby core shows that the major and most minor events are well replicated. These close matches establish our confidence in the lithogenic extraction techniques and measurements. Further, reproducibility on a core-to-core scale indicates that the eolian depositional signal is regionally strong, coherent, and well preserved. The lithogenic weight percent and magnetic susceptibility are extremely well correlated in both the time and frequency domains. From this we infer that the magnetically susceptible component of Owen Ridge sediments is of terrestrial origin and transported to the Owen Ridge via summer monsoon winds. Because of the high correlation with the lithogenic percent record, the magnetic susceptibility record can be cast in terms of lithogenic MAR and used as a high resolution proxy for continental aridity. In addition to primary Milankovitch periodicities, the Hole 722B grain-size record exhibits periodicity at 52 k.y. and at 29 k.y. Both periodicities are also found in the grain-size record from piston core RC11-210 in the equatorial Pacific Ocean. Comparison of the two grain-size records shows significant coherence and zero phase relationships over both the 52 and 29 k.y. periodicities suggesting that the strengths of the Indian Ocean monsoon and the Pacific southeasterly trade winds share common forcing mechanisms. Two possible origins for the 52 and 29 k.y. periodicities in the Hole 722B wind-strength record are (1) direct Milankovitch forcing (54 and 29 k.y. components of obliquity) and (2) combination periodicities resulting from nonlinear interactions within the climate system. We find that the 52 and 29 k.y. periodicities show stronger coherency with crossproducts of eccentricity and obliquity (29 k.y.) and precession and obliquity (52 k.y.) than with direct obliquity forcing. Our working hypothesis attributes these periodicities to nonlinear interaction between external insolation forcing and internal climatic feedback mechanisms involving an interdependence of continental snow/ice-mass (albedo) and the hydrological cycle (latent heat availability).
Resumo:
Knowledge of past natural flood variability and controlling climate factors is of high value since it can be useful to refine projections of the future flood behavior under climate warming. In this context, we present a seasonally resolved 2000 year long flood frequency and intensity reconstruction from the southern Alpine slope (North Italy) using annually laminated (varved) lake sediments. Floods occurred predominantly during summer and autumn, whereas winter and spring events were rare. The all-season flood frequency and, particularly, the occurrence of summer events increased during solar minima, suggesting solar-induced circulation changes resembling negative conditions of the North Atlantic Oscillation as controlling atmospheric mechanism. Furthermore, the most extreme autumn events occurred during a period of warm Mediterranean sea surface temperature. Interpreting these results in regard to present climate change, our data set proposes for a warming scenario, a decrease in summer floods, but an increase in the intensity of autumn floods at the South-Alpine slope.
Resumo:
A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal delta18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial.
Resumo:
Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabited the Sannai-Maruyama site from 5.9-4.2 +/- 0.1 cal. kyr B.P. However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4-7.9, 7.0-5.9, 5.1-4.1, and 2.3-1.4 cal. kyr B.P.) and four of low (-8.4, 7.9-7.0, 5.9-5.1, and 4.1-2.3 cal. kyr B.P.) SST. Thus, each SST cycle lasted 1.0-2.0 kyr, and the amplitude of fluctuation was about 1.5-2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal. kyr B.P., but was clearly increased between 5.9 and 4.0 cal. kyr B.P., because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 +/- 0.1 cal. kyr B.P.), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal. kyr B.P., in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal. kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 +/- 0.1 cal. kyr B.P., abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0-4.3 cal. kyr B.P.) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.