663 resultados para Mgo-feo-sio2-al3o3-cr2o3 System
Resumo:
An investigation of ~1-m.y.-old dikes and lavas from the north wall of the Hess Deep Rift (2°15'N, 101°30'W) collected during Alvin expeditions provides a detailed view of the evolution of fast spreading oceanic crust. The study area encompasses 25 km of an east-west flow line, representing ~370,000 years of crustal accretion at the East Pacific Rise. Samples analyzed exhibit depleted incompatible trace element abundances and ratios [(La/Sm)N < 1]. Indices of fractionation (MgO), and incompatible element ratios (La/Sm, Nb/Ti) show no systematic trends along flow line. Rather, over short (<4 m) and long (~25 km) distances, significant variations are observed in major and trace element concentrations and ratios. Modeling of these variations attests to the juxtaposition of dikes of distinct parental magma compositions. These findings, combined with studies of segmentation of the subaxial magma chamber and lateral magma transport in dikes along rift-dominated systems, suggest a more realistic model of the magmatic system underlying the East Pacific Rise relative to the commonly assumed twodimensional model. In this model, melts from a heterogeneous mantle feed distinct portions of a segmented axial magma reservoir. Dikes emanating from these distinct reservoirs transport magma along axis, resulting in interleaved dikes and host lavas with different evolutionary histories. This model suggests the use of axial or flow line lava compositions to infer the evolution of axial magma chambers should be approached with caution because dikes may never erupt lava or may transport magma significant distances along axis and erupt lavas far from their axial magma chamber of origin.
Resumo:
Rangitawa Tephra is an important stratigraphic marker in mid-Pleistocene marine and terrestrial sequences in New Zealand and adjacent ocean basins. Zircon fission track ages (ZFTA) on Rangitawa Tephra from five sites in the southern North Island yield mean site ages in the range 0.34 to 0.40 Ma with a weighted mean of 0.35 + 0.04 Ma (1 sigma). On the basis of glass shard major-element chemistry, ferromagnesian mineralogy, ZFTA and similarity of paleomagnetic dates of proposed tephra correlalives in deep-sea cores, it is concluded that Rangitawa Tephra represents a major eruptive event in the Taupo Volcanic Zone most probably associated with eruption of the Whakamaru-group ignimbrites (0.35 0.39 Ma) or less likely the Paeroa Range Group Ignimbrites (0.36 -0.38 Ma). Pollen analyses from two onshore sites, together with regional loess stratigraphy, show that Rangitawa Tephra was erupted during a glacial period. The ZFTA and previously reported oxygen isotope data from DSDP Site 594 indicate that Rangitawa Tephra was erupted near the end of oxygen isotope stage 10.
Resumo:
Trace element analyses (first-series transition elements, Ti, Rb, Sr, Zr, Y, Nb, and REE) were carried out on whole rocks and minerals from 10 peridotite samples from both Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc using a combination of XRF, ID-MS, ICP-MS, and ion microprobe. The concentrations of incompatible trace elements are generally low, reflecting the highly residual nature of the peridotites and their low clinopyroxene content (<2%). Chondrite-normalized REE patterns show extreme U shapes with (La/Sm)n ratios in the range of 5.03-250.0 and (Sm/Yb)n ratios in the range of 0.05-0.25; several samples show possible small positive Eu anomalies. LREE enrichment is common to both seamounts, although the peridotites from Conical Seamount have higher (La/Ce)n ratios on extended chondrite-normalized plots, in which both REEs and other trace elements are organized according to their incompatibility with respect to a harzburgitic mantle. Comparison with abyssal peridotite patterns suggests that the LREEs, Rb, Nb, Sr, Sm, and Eu are all enriched in the Leg 125 peridotites, but Ti and the HREEs exhibit no obvious enrichment. The peridotites also give positive anomalies for Zr and Sr relative to their neighboring REEs. Covariation diagrams based on clinopyroxene data show that Ti and the HREEs plot on an extension of an abyssal peridotite trend to more residual compositions. However, the LREEs, Rb, Sr, Sm, and Eu are displaced off this trend toward higher values, suggesting that these elements were introduced during an enrichment event. The axis of dispersion on these plots further suggests that enrichment took place during or after melting and thus was not a characteristic of the lithosphere before subduction. Compared with boninites sampled from the Izu-Bonin-Mariana forearc, the peridotites are significantly more enriched in LREEs. Modeling of the melting process indicates that if they represent the most depleted residues of the melting events that generated forearc boninites they must have experienced subsolidus enrichment in these elements, as well as in Rb, Sr, Zr, Nb, Sm, and Eu. The lack of any correlation with the degree of serpentinization suggests that low-temperature fluids were not the prime cause of enrichment. The enrichment in the high-field-strength elements also suggests that at least some of this enrichment may have involved melts rather than aqueous fluids. Moreover, the presence of the hydrous minerals magnesio-hornblende and tremolite and the common resorption of orthopyroxene indicate that this high-temperature peridotite-fluid interaction may have taken place in a water-rich environment in the forearc following the melting event that produced the boninites. The peridotites from Leg 125 may therefore contain a record of an important flux of elements into the mantle wedge during the initial formation of forearc lithosphere. Ophiolitic peridotites with these characteristics have not yet been reported, perhaps because the precise equivalents to the serpentinite seamounts have not been analyzed.
Resumo:
Four chemically distinct basalts were cored in 44 m of basement penetration at Deep Sea Drilling Project Site 543, in Upper Cretaceous crust just seaward of the deformation front of the Barbados Ridge and north of the Tiburon Rise. All four types are moderately fractionated abyssal tholeiites. The four types have different magnetic inclinations, all of reversed polarity, suggesting eruption at different times which recorded secular variation of the earth's magnetic field. Extensive replacement of Plagioclase by K-feldspar has occurred at the top of the basalts, giving analyses with K2O contents up to 5 %. The earliest stages of alteration were dominantly oxidative, resulting in fractures lined with celadonite and dioctahedral smectite, and pervasive replacement of olivine and most intersertal glass with iron hydroxides and green clay minerals. Latef, non-oxidative alteration resulted in formation of olive-green clays and pyrite veins in a portion of the rocks. Basalts affected by this alteration actually lost K2O (to abundances lower than in adjacent fresh basalt glasses), and gained MgO (to abundances higher than in the glasses). Finally, fractures and interpillow voids were lined with calcite, sealing in much fresh glass. Oxygen-isotope measurements on the calcite indicate that this occurred at 12 to 25C. Either altering fluids were warm or the basalts had become buried with a considerable thickness of sediments, such that temperatures increased until a conductive thermal gradient was established, when the veining occurred.
Resumo:
Study of chemical composition of 26 samples collected at depths from 400 to 1400 m on vertex surfaces of the Southeast Indian Ridge, Mascarene Ridge, Madagascar Ridge, and Mozambique Ridge, as well as on the upper part of the Southeast Africa continental slope showed that the samples represent three groups of rocks: 1) low phosphate or phosphate-free ferromanganese rocks, 2) phosphate ferromanganese rocks 3) phosphorites and phosphatized limestones.
Resumo:
At all DSDP Leg 56 drilling sites, exotic pebbles occur commonly, throughout the cores. Chips of carbonate nodules occur only at Site 434 on the lower inner trench wall. Both exotic pebbles and carbonate nodule chips sometimes tend to be concentrated at particular levels of cores. Exotic pebbles are generally well rounded and consist of various rock types, such as dacite, andesite, basalt, tuff, gabbro, granodiorite, metaquartzite, biotite hornfels, lithic wacke, mudstone, etc., of which dacite occurs commonly at all the sites. Almost all pebbles at Site 436 and most at Sites 434 and 435 may have been rafted by ice. Some at the latter sites may have been derived by down-slope slumping. Carbonate nodules consist of microcrystalline dolomite, manganoan calcite, and siderite; CaCO3 content ranges from 22 to 65 per cent. They are also generally characterized by a high content of P2O5. The nodules are commonly rich in diatom remains, some of which indicate that the nodules are autochthonous. Some nodules contain abundant glass shards, with a modal refractive index of 1.499, almost identical to shards in the surrounding mud and ooze. These facts suggest that the carbonate nodules may have been formed diagenetically, in situ. This may throw light on problems of the formation of carbonate nodules in ancient "geosynclinal" sediments. It is also very important to point out that these carbonate nodules were formed within sediment deposited well below the CCD.
Resumo:
The mineralogy and chemistry of altered basalts and the stable isotopic compositions of secondary vein carbonates were studied in cores from Ocean Drilling Program Hole 843B, located in 95-Ma crust of the Hawaiian Arch. Millimeter- to centimeter-sized dark alteration halos around veins are 5%-15% altered to celadonite and Fe-oxyhydroxides, plus minor saponite and calcite. Adjacent gray host rocks are about 15% altered to saponite and calcite. The dark halos are enriched in H2O+, CO2, FeT, K2O, MnO, and Fe3+/FeT and depleted in SiO2, Al2O3, MgO, and TiO2 relative to gray host rocks. Brown alteration halos occur around veins where veins are more abundant, and are similar to dark halos, but contain more Fe-oxyhydroxides and exhibit greater Fe2O3T contents and higher Fe3+/FeT. Stable isotopic compositions of vein carbonates are consistent with their precipitation from seawater at temperatures of 5°-40°C. Crosscutting relationships of veins and zoned vein and vesicle fillings reveal a sequence of secondary mineral formation and alteration conditions. Celadonite and Fe-oxyhydroxides formed and dark alteration halos developed relatively early, under oxidizing conditions at low temperatures (<50°C). Saponite formed later at lower seawater/rock ratios and under more reducing conditions. Calcite and pyrite formed last in veins and vesicles from more evolved, seawaterderived fluids at temperatures of 5°-40°C. A second stage of celadonite, with compositions distinct from the early celadonite, also occurred relatively late (within the "calcite stage"), and may be related to refracturing of the crust and introduction of less-evolved seawater solutions into the rocks. Trends to higher K2O contents are attributed to alteration, but high K/Ti, Ba, and Zr contents indicate the presence of enriched or transitional MORB. CO2 contents of Pacific ODP cores exhibit a general increase with age suggesting progressive fixation of CO2 as calcite in the crust, but this could be complicated by local heterogeneities in fracturing and calcite formation in the crust.
Resumo:
REE abundances in gabbros and peridotites from Site 334 of DSDP Leg 37 show that these rocks are cumulates produced by fractional crystallization of a primitive oceanic tholeiite magma. They may be part of a layered oceanic complex. The REE distributions in the residual liquids left after such a fractionation are similar to those of incompatible element-depleted oceanic tholeiites. The REE data indicate that the basalts which overlie the gabbro-peridotite complex, are not genetically related to plutonic rocks.
Resumo:
During the analysis of "glaucony" recovered during Leg 66, off Mexico, we reviewed the data on previously studied glaucony layers in active margin areas. We found the depth of Leg 66 glaucony sediments to be significantly greater than conventionally assumed appropriate to their genesis (100-500 m). Accordingly, we hypothesize their occurrence at unusual depth to be due to (1) transport of shallow sediments and redeposition at greater depths, (2) margin subsidence, or (3) genesis at greater depth than is generally assumed. For the area off Mexico, we reject (1). (2) has already been verified in Japan and is possible as an explanation for the present phenomenon without excluding (3), which we investigate in this chapter.
Resumo:
This paper presents results of studies of rocks sampled during Cruise 19 of R/V Akademik Mstislav Keldysh with the Mir submersibles in the Atlantic Ocean (slopes of the King's Trough and Palmer Ridge). Based on these materials and published data two stages of magmatism and evolution in the region are distinguished: 1) formation of a mid-ocean ridge in the rift zone (68-32 Ma); 2) development of intraplate volcanism during movement of the plate over a "hot spot" (32-0 Ma).
Resumo:
Detection of climate response to orbital forcing during Cenozoic long-term global cooling is a key to understanding the behavior of Earth's icehouse climate. Sedimentary rhythm, which is a rhythmic or cyclic variation in the sequence of sediments and sedimentary rocks, is useful for quantitative reconstruction of Earth's evolution during geological time. In this study, we attempt to (1) identify sources of natural gamma ray (NGR) emissions of core recovered during Ocean Drilling Program (ODP) Leg 186 by analyses of physical properties, major element concentrations, diatom abundances, and total organic carbon contents, (2) integrate whole-core NGR intensity of recovered core with wireline logging NGR measurements in order to construct a continuous sedimentary sequence, and (3) discuss changes in the NGR signal in the time domain. This attempt gives us preliminary information to discuss climate stability in relation to orbital forcing thorough geologic time. NGR values are obtained mainly by indirectly measuring the amount of terrigenous minerals including potassium and related elements in the sediments. NGR intensity is also affected by high porosity, which in these sediments was related to the amount of diatom valves. NGR signals might be a proxy of the intensity of the East Asian monsoon off Sanriku. A continuous sedimentary record was constructed by integration of the whole-core NGR intensity measured in sediments obtained from the drilled holes with that measured directly in the borehole by wireline logging, then using a stratigraphic age model to convert to a time series covering 1.3-9.7 Ma with a short break at ~5 Ma. High sedimentation rate (H) stages were identified in the sequence, related to intervals of low-amplitude precession and eccentricity variations. The transition of the dominant periodicities through the four H stages may correlate to major shifts in the climate system, including the onset of major Northern Hemisphere glaciation, the initial stage of the East Asian monsoon intensification, and the onset of the East Asian monsoon with uplift of the Himalayas and the Tibetan Plateau.
Resumo:
Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar/39Ar ages determined in this study for two Leg 129 basalts average 114.6 +/- 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites (87Sr/86Sr init = 0.70360-0.70374; 143Nd/144Nd init = 0.512769-0.512790; 206Pb/204Pb meas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 +/- 1.0 Ma 40Ar/39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous basement in the Nauru and East Mariana Basins is Jurassic in age, the geochemical and chronological results discussed here suggest that the basement formed during a Cretaceous rifting event within the Jurassic crust. This magmatic and tectonic event was created by the widespread volcanism responsible for the genesis of the large oceanic plateaus of the western Pacific.
Resumo:
This report presents all the available major and trace elemental analyses and Sr, Nd, and Pb isotopic compositions of basaltic rocks recovered from Ocean Drilling Program Sites 800, 801, and 802 during Leg 129 (Table 1). Its main purpose is to provide other investigators a complete summary of geochemical data for Leg 129 basement basalts that they can use for later work. Detailed discussions of the data are presented elsewhere in the volume by Floyd and Castillo (Site 801 geochemistry and petrogenesis, dataset: doi:10.1594/PANGAEA.779154) Floyd et al. (Sites 800 and 802 geochemistry and petrography, dataset: doi:10.1594/PANGAEA.779129), Alt et al. (Site 801 alteration, dataset: doi:10.1594/PANGAEA.779207), and Castillo et al. (Sr, Nd, and Pb isotope geochemistry of Leg 129 basalts, dataset: doi:10.1594/PANGAEA.779191).
Resumo:
Metamorphic rocks of the Khavyven Highland in eastern Kamchatka were determined to comprise two complexes of metavolcanic rocks that have different ages and are associated with subordinate amounts of metasediments. The complex composing the lower part of the visible vertical section of the highland is dominated by leucocratic amphibole-mica (+/-garnet) and epidote-mica (+/-garnet) crystalline schists, whose protoliths were andesites and dacites and their high-K varieties of island-arc calc-alkaline series. The other complex composing the upper part of the vertical section consists of spilitized basaltoids transformed into epidote-amphibole and phengite-epidote-amphibole green schists, which form (together with quartzites, serpentinized peridotites, serpentinites, and gabbroids) a sea-margin ophiolitic association. High LILE concentrations, high K/La, Ba/Th, Th/Ta, and La/Nb ratios, deep Ta-Nb minima, and low (La/Yb)_N and high 87Sr/86Sr ratios of the crystalline schists of the lower unit are demonstrated to testify to their subduction nature and suggest that their protolithic volcanics were produced in the suprasubduction environment of the Ozernoi-Valaginskii (Achaivayam-Valaginskii) island volcanic arc of Campanian-Paleogene age. The green schists of the upper unit show features of depleted MOR tholeiitic melts and subduction melts, which cause the deep Ta-Nb minima, and low K/La and 87Sr/86Sr ratios suggesting that the green schists formed in a marginal basin in front of the Ozernoi-Valaginskaya island arc. Recently obtained K-Ar ages in the Khavyven Highland vary from 32.4 to 39.3 Ma and indicate that metamorphism of the protolithic rocks occurred in Eocene under effect of collision and accretion processes of the arc complexes of the Ozernoi-Valaginskii and Kronotskii island arcs with the Asian continent and the closure of forearc oceanic basins in front of them. The modern position of the collision suture that marks the fossil subduction zone of the Ozernoi-Valaginskii arc and is spatially restricted to the buried Khavyven uplift in the Central Kamchatka Depression characterized by well-pronounced linear gravity anomalies.
Resumo:
Research of the ocean floor using the Mir submersibles carried out south of the Hawaiian Archipelago allowed to recover flows of recent picrite basalts. Lava vents are confined to a field of development of open fractures of a gjar type. Basalts represent initial lava flows in the structure of the Hawaiian volcanic archipelago. Considering contents of alkali and rare-earth elements in them, the picrite basalts of the bottom could be assigned to a series of island tholeiites. They are products of high level melting of asthenospheric matter at depth about 75-80 km as a result of decompression near a deep fracture that occurred in the lithosphere and asthenosphere. Similar picrite basalts were found in the base of the youngest volcano of the Hawaiian chain the Loihi Volcano. With respect to contents of alkali metals, these rocks are assigned to the subalkaline series of rocks formed during melting of garnet lherzolites. This could probably be explained by supply of melts from deeper levels of the asthenosphere after partial packing of an initial magma effluent fracture.