400 resultados para Achnanthes brevipes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Kap Mackenzie area on the outer coast of northeast Greenland was glaciated during the last glacial stage, and pre-Holocene shell material was brought to the area. Dating of marine shells indicates that deglaciation occurred in the earliest Holocene, before 10 800 cal. a BP. The marine limit is around 53 m a.s.l. In the wake of the deglaciation, a glaciomarine fauna characterized the area, but after c. one millennium a more species-rich marine fauna took over. This fauna included Mytilus edulis and Mysella sovaliki, which do not live in the region at present; the latter is new to the Holocene fauna of northeast Greenland. The oldest M. edulis sample is dated to c. 9500 cal. a BP, which is the earliest date for the species from the region and indicates that the Holocene thermal maximum began earlier in the region than previously documented. This is supported by driftwood dated to c. 9650 cal. a BP, which is the earliest driftwood date so far from northeastern Greenland and implies that the coastal area was at least partly free of sea ice in summer. As indicated by former studies, the Storegga tsunami hit the Kap Mackenzie area at c. 8100 cal. a BP. Loon Lake, at 18 m a.s.l., was isolated from the sea at c. 6200 cal. a BP, which is distinctly later than expected from existing relative sea-level curves for the region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mesozooplankton community, with special emphasis on calanoid copepods, was studied with respect to its species composition, abundance, vertical distribution and developmental structure during the ISPOL expedition to the ice covered western Weddell Sea. Stratified zooplankton tows were carried out nine times between December 1, 2004 and January 2, 2005 with a multiple opening-closing net between 0 and 1000 m depth. Copepods were by far the most abundant taxon contributing more than 94% of the total mesozooplankton. Numerical dominants were cyclopoid copepods, mostly Oncaea spp. A total of 66 calanoid copepod species were identified, but the calanoid copepod community was characterised by the dominance of only a few species. The most numerous species was Microcalanus pygmaeus, which comprised on average 70% of all calanoids. Calanoides acutus and Metridia gerlachei represented other abundant calanoid species contributing an average of 8 and 7%, respectively. All other species comprised less than 3%. The temporal changes in the abundance and population structure of M. pygmaeus and M. gerlachei were small while a shift in the stage frequency distribution of C. acutus was observed during the study: CIV dominated the C. acutus population with 48 to 50% during the first week of December, while CV comprised 48% in late December. CI and CII of C. acutus were absent in the samples and males occurred only in very low numbers in greater depths. In M. gerlachei, CI was not found, whereas all developmental stages of M. pygmaeus occurred throughout the study. All three species showed migratory behaviour, and they occurred in upper water layers towards the end of the investigation. This vertical ascent was most pronounced in C. acutus and relatively weak in the other two species. In M. pygmaeus and M. gerlachei, copepodite stages were responsible for the upward migration in late December, while the vertical distribution of adults did not change. In C. acutus all abundant developmental stages (CIV, CV and females) ascended to upper water layers. Almost exclusively (93%) medium- and semi-ripe females of C. acutus and M. gerlachei were found, and only 3 - 4% of the ovaries were ripe. The absence of CI and the low number of ripe females indicate that the main reproductive period had not started in C. acutus and M. gerlachei until the end of our study in early January. In contrast, the high portion of CI and CII of M. pygmaeus suggests that reproduction of this species had started in October-November and hence, before the onset of the phytoplankton bloom in the water. The community structure did not differ between stations with one exception on December 26, when the station was strongly influenced by the continental shelf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diatom flora from two sediment cores recovered from the upper 27 meters below seafloor (mbsf) in the oceanic frontal area off Sanriku, northeast Japan, during Ocean Drilling Program Leg 186 were analyzed. Diatom abundance seems to be in interglacial stages and suggests a south-north shifting of the frontal area. Diatom temperature values are less reliable because frequency of the warm-water species is smaller. Site 1151 was in a warm climate at ~50 ka, as were Deep Sea Drilling Project Sites 579 and 580 in the western North Pacific Ocean. A mixed diatom assemblage in the upper 3 mbsf at Site 1150 is evidence that the Tsugaru Warm Current flowed into the studied area through the Tsugaru Strait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main emphasis of this study was to analyse the short-term development of abundance, population structure and vertical distribution of the dominant calanoid copepods during a phytoplankton bloom in the coastal area of the eastern Weddell Sea in December 2003. Microcalanus pygmaeus was by far the most abundant calanoid species. Metridia gerlachei, Ctenocalanus citer, Calanoides acutus, Calanus propinquus and the ice-associated Stephos longipes were also present in considerable proportions. The observed changes in the population characteristics and parameters of these species are described in detail and discussed in the context of the spring phytoplankton bloom. A conspicuous event occurring during the final stage of the study was the development of a strong storm. While the results suggest that this storm did not have any considerable influence on the populations of all other investigated copepod species, it very likely caused pronounced changes in the S. longipes population present in the water column. Before the storm, S. longipes was found primarily in the upper 100 m of the water column, and its population was dominated by adults (mean proportion = 41%) and the copepodite stage I (mean proportion = 30%). After the storm, the abundance increased considerably, and the copepodite stage I contributed by far the largest proportion (53%) of the total population indicating that the early copepodite stages probably had been released from the sea ice into the under ice water layer due to ice break-up and ice melt processes caused by the storm.