989 resultados para Accumulation rate, benthic foraminifera by number
Resumo:
We present a new method for the quantitative reconstruction of upper ocean flows for during times in the past. For the warm (T>5°C) surface ocean, density can be accurately reconstructed from calcite precipitated in equilibrium with seawater, as both of these properties increase with decreasing temperature and increasing salinity. Vertical density profiles can be reconstructed from the oxygen isotopic composition of benthic foraminifera. The net volume transport between two vertical density profiles can be calculated using the geostrophic method. Using benthic foraminifera from surface sediment samples from either side of the Florida Straits (Florida Keys and Little Bahama Bank), we reconstruct two vertical density profiles and calculate a volume transport of 32 Sv using this method. This agrees well with estimates from physical oceanographic methods of 30-32 Sv for the mean annual volume transport. We explore the sensitivity of this technique to various changes in the relationship between temperature and salinity as well as salinity and the oxygen isotopic composition of seawater.
Resumo:
Tropical climate is variable on astronomical time scale, driving changes in surface and deep-sea fauna during the Pliocene-Pleistocene. To understand these changes in the tropical Indian Ocean over the past 2.36 Myr, we quantitatively analyzed deep-sea benthic foraminifera and selected planktic foraminifera from >125 µm size fraction from Deep Sea Drilling Project Site 219. The data from Site 219 was combined with published foraminiferal and isotope data from Site 214, eastern Indian Ocean to determine the nature of changes. Factor and cluster analyses of the 28 highest-ranked species distinguished four biofacies, characterizing distinct deep-sea environmental settings. These biofacies have been named after their most dominant species such as Stilostomella lepidula-Pleurostomella alternans (Sl-Pa), Nuttallides umbonifer-Globocassidulina subglobosa (Nu-Gs), Oridorsalis umbonatus-Gavelinopsis lobatulus (Ou-Gl) and Epistominella exigua-Uvigerina hispido-costata (Ee-Uh) biofacies. Biofacies Sl-Pa ranges from ~2.36 to 0.55 Myr, biofacies Nu-Gs ranges from ~1.9 to 0.65 Myr, biofacies Ou-Gl ranges from ~1 to 0.35 Myr and biofacies Ee-Uh ranges from 1.1 to 0.25 Myr. The proxy record indicates fluctuating tropical environmental conditions such as oxygenation, surface productivity and organic food supply. These changes appear to have been driven by changes in monsoonal wind intensity related to glacial-interglacial cycles. A shift at ~1.2-0.9 Myr is observed in both the faunal and isotope records at Site 219, indicating a major increase in monsoon-induced productivity. This coincides with increased amplitude of glacial cycles, which appear to have influenced low latitude monsoonal climate as well as deep-sea conditions in the tropical Indian Ocean.
Resumo:
Site 1123 is located on the northeastern flank of the Chatham Rise. Sedimentological and clay mineralogical analyses indicate a very fine grained carbonate-rich sediment. Smectite and illite are the main constituents of the clay mineral assemblage. High smectite values in the Eocene decrease in younger sediment sequences. Illite and chlorite concentrations increase in younger sediments with significant steps at 13.5, 9, and 6.4 Ma. The kaolinite content is near the detection limit and not significant. We observed only small fluctuations of the clay mineral composition, which indicates a uniform sedimentation process, probably driven by long-term processes. Good correspondence is shown between increasing illite and chlorite values and the tectonic uplift history of the Southern Alps.
Resumo:
Twenty-three sediment intervals from top of Site 650 down to 510 m below seafloor have been studied. Their thicknesses vary between 0.25 m and about 40 m. The studied deposits are turbidites or parts of them except one which is interpreted as an ash-fall layer. The composition of the turbidites signalizes sources from shallow water/coastal areas as well as from deep water levels. Repeated mobilization and displacement seems to have been common. Volcaniclastic material is the dominant component of the whole studied part of Site 650 sedimentary sequence. Ashfall deposits as well as normal open marine sediments are rare.