791 resultados para A. elongatus
Resumo:
Qualitative and quantitative mesozooplankton composition was examined on materials collected during an expedition carried out in October 1998 onboard the research icebreaker Akademik Fedorov. At different stations number of species varied from 25 to 33; wet biomass - from 20 to 109 g/m**2. Flux of autochthonous organic matter through plankton communities calculated from data on structural and functional analysis was from 2 to 40 mg C/m**2/day.
Resumo:
Late Aptian through middle Eocene nannofossil assemblages were recovered from a continuously cored section at Site 585. Poorly preserved assemblages of low diversity were observed in samples taken throughout both upper Aptian and/or lower Albian sandstone and mudstone and middle Cenomanian to lower Turonian claystone at the base of this section. A 70-m interval barren of nannofossils separates these poorly preserved assemblages from those recovered from an upper Campanian chalk farther uphole. This chalk marks the most significant change in carbonate deposition at this site, and deposition of interbedded zeolitic claystone and sediment of varied nannofossil content proceeded without major interruption until the early Paleocene (Fasciculithus tympaniformis Zone, CP4). A middle Eocene chalk (dated by nannofossils) unconformably overlies lower Paleocene sediment in both Holes 585 and 585A. Only a few interbeds of zeolitic claystone are present within 100 m of nannofossil-rich sediment above this unconformity. This entire interval is cautiously assigned to the Discoaster sublodoensis Zone (CP 12), which indicates a sedimentation rate almost an order of magnitude higher than expected from normal pelagic sedimentation. The most obvious feature of the assemblages examined from these cores is the amount of reworked material. Rare Nannoconus elongatus and Braarudosphaera sp. in several upper Campanian to middle Eocene samples demonstrate the contribution of pelagic material from upslope and, along with other reworked species throughout the Upper Cretaceous samples examined, provide evidence contradictory to an excursion of the calcium compensation depth to deep basinal settings in the western Pacific during the Campanian-Maestrichtian time (Thierstein, 1979). The overwhelming dominance of reworked species in all middle Eocene samples examined and the persistence of these assemblages throughout such a large thickness of sediment suggest that currents that redeposited material intensified at this time and may be associated with the formation of the lower Paleocene/middle Eocene unconformity at this site. A single surface core of calcareous ooze taken from Hole 585A dated as early Pleistocene contains abundant and well-preserved late Miocene and Pliocene species.
Resumo:
The present dataset includes results of analysis of 227 zooplankton samples taken in and off the Sevastopol Bay in the Black Sea in 1976, 1979-1980, 1989-1990, 1995-1996 and 2002-2003. Exact coordinates for stations 1, 4, 5 and 6 are unknown and were calculated using Google-earth program. Data on Ctenophora Mnemiopsis leidyi and Beroe ovata are not included. Juday net: Vertical tows of a Juday net, with mouth area 0.1 m**2, mesh size 150µm. Tows were performed at layers. Towing speed: about 0.5 m/s. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. The collected material was analysed using the method of portions (Yashnov, 1939). Samples were brought to volume of 50 - 100 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 1 ml of sample was taken by calibrated Stempel-pipette. This operation was produced twice. If divergence between two examined subsamples was more than 30% one more subsample was examined. Large (> 1 mm body length) and not abundant species were calculated in 1/2, 1/4, 1/8, 1/16 or 1/32 part of sample. Counting and measuring of organisms were made in the Bogorov chamber under the stereomicroscope to the lowest taxon possible. Number of organisms per sample was calculated as simple average of two subsamples meanings multiplied on subsample volume. Total abundance of mesozooplankton was calculated as sum of taxon-specific abundances and total abundance of Copepods was calculated as sum of copepods taxon-specific abundances.
Resumo:
The Danubs 2001 dataset contains zooplankton data collected in March, June, September and October 2001 in 11 station allong 5 transect in front of the Romanian littoral. Zooplankton sampling was undertaken at 11 stations where samples were collected using a Juday closing net in the 0-10, 10-25, and 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.