414 resultados para 1 Sigma error


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcium isotopic compositions (d44Ca) of 30 high-purity nannofossil ooze and chalk and 7 pore fluid samples from ODP Site 807A (Ontong Java Plateau) are used in conjunction with numerical models to determine the equilibrium calcium isotope fractionation factor (a_s-f) between calcite and dissolved Ca2+ and the rates of post-depositional recrystallization in deep sea carbonate ooze. The value of a_s-f at equilibrium in the marine sedimentary section is 1.0000+/-0.0001, which is significantly different from the value (0.9987+/-0.0002) found in laboratory experiments of calcite precipitation and in the formation of biogenic calcite in the surface ocean. We hypothesize that this fractionation factor is relevant to calcite precipitation in any system at equilibrium and that this equilibrium fractionation factor has implications for the mechanisms responsible for Ca isotope fractionation during calcite precipitation. We describe a steady state model that offers a unified framework for explaining Ca isotope fractionation across the observed precipitation rate range of ~14 orders of magnitude. The model attributes Ca isotope fractionation to the relative balance between the attachment and detachment fluxes at the calcite crystal surface. This model represents our hypothesis for the mechanism responsible for isotope fractionation during calcite precipitation. The Ca isotope data provide evidence that the bulk rate of calcite recrystallization in freshly-deposited carbonate ooze is 30-40%/Myr, and decreases with age to about 2%/Myr in 2-3 million year old sediment. The recrystallization rates determined from Ca isotopes for Pleistocene sediments are higher than those previously inferred from pore fluid Sr concentration and are consistent with rates derived for Late Pleistocene siliciclastic sediments using uranium isotopes. Combining our results for the equilibrium fractionation factor and recrystallization rates, we evaluate the effect of diagenesis on the Ca isotopic composition of marine carbonates at Site 807A. Since calcite precipitation rates in the sedimentary column are many orders of magnitude slower than laboratory experiments and the pore fluids are only slightly oversaturated with respect to calcite, the isotopic composition of diagenetic calcite is likely to reflect equilibrium precipitation. Accordingly, diagenesis produces a maximum shift in d44Ca of +0.15? for Site 807A sediments but will have a larger impact where sedimentation rates are low, seawater circulates through the sediment pile, or there are prolonged depositional hiatuses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strontium- and oxygen-isotopic measurements of samples recovered from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound during Leg 158 of the Ocean Drilling Program provide important constraints on the nature of fluid-rock interactions during basalt alteration and mineralization within an active hydrothermal deposit. Fresh Mid-Ocean Ridge Basalt (MORB), with a 87Sr/86Sr of 0.7026, from the basement beneath the TAG mound was altered at both low and high temperatures by seawater and altered at high temperature by near end-member black smoker fluids. Pillow breccias occurring beneath the margins of the mound are locally recrystallized to chlorite by interaction with large volumes of conductively heated seawater (>200°C). The development of a silicified, sulfide-mineralized stockwork within the basaltic basement follows a simple paragenetic sequence of chloritization followed by mineralization and the development of a quartz+pyrite+paragonite stockwork cut by quartz-pyrite veins. Initial alteration involved the development of chloritic alteration halos around basalt clasts by reaction with a Mg-bearing mixture of upwelling, high-temperature (>300°C), black smoker-type fluid with a minor (<10%) proportion of seawater. Continued high-temperature (>300°C) interaction between the wallrock and these Mg-bearing fluids results in the complete recrystallization of the wallrock to chlorite+quartz+pyrite. The quartz+pyrite+paragonite assemblage replaces the chloritized basalts, and developed by reaction at 250-360°C with end-member hydrothermal fluids having 87Sr/86Sr ~0.7038, similar to present-day vent fluids. The uniformity of the 87Sr/86Sr ratios of hydrothermal assemblages throughout the mound and stockwork requires that the 87Sr/86Sr ratio of end-member hydrothermal fluids has remained relatively constant for a time period longer than that required to change the interior thermal structure and plumbing network of the mound and underlying stockwork. Precipitation of anhydrite in breccias and as late-stage veins throughout most of the mound and stockwork, down to at least 125 mbsf, records extensive entrainment of seawater into the hydrothermal deposit. 87Sr/86Sr ratios indicate that most of the anhydrite formed from ~2:1 mixture of seawater and black smoker fluids (65%±15% seawater). Oxygen-isotopic compositions imply that anhydrite precipitated at temperatures between 147°C and 270°C and require that seawater was conductively heated to between 100°C and 180°C before mixing and precipitation occurred. Anhydrite from the TAG mound has a Sr-Ca partition coefficient Kd ~0.60±0.28 (2 sigma). This value is in agreement with the range of experimentally determined partition coefficients (Kd ~0.27-0.73) and is similar to those calculated for anhydrite from active black smoker chimneys from 21°N on the East Pacific Rise. The d18O (for SO4) of TAG anhydrite brackets the value of seawater sulfate oxygen (~9.5?). Dissolution of anhydrite back into the oceans during episodes of hydrothermal quiescence provides a mechanism of buffering seawater sulfate oxygen to an isotopically light composition, in addition to the precipitation and dissolution of anhydrite within the oceanic basement during hydrothermal recharge at the mid-ocean ridges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Massive clinoptilolite authigenesis was observed at about 1105 meters below sea floor (mbsf) in lower Miocene wellcompacted carbonate periplatform sediments from the Great Bahama Bank [Ocean Drilling Program, ODP Leg 166, Site 1007]. The diagenetic assemblage comprises abundant zeolite crystallized within foraminifer tests and sedimentary matrix, as well as Mg smectites. In carbonate-rich deposits, the formation of the zeolite requires a supply of silica. Thus, the objective of the study is to determine the origin of the silica supply, its diagenetic evolution, and consequently the related implications on interpretation of the sedimentary record, in terms of local or global paleoceanographic change. For lack of evidence for any volcaniclastic input or traces of Si-enriched deep fluids circulation, an in situ biogenic source of silica is validated by isotopic data and chemical modeling for the formation of such secondary minerals in shallow-water carbonate sequences. Geochemical and strontium isotopic data clearly establish the marine signature of the diagenetic zeolite, as well as its contemporaneous formation with the carbonate deposition (Sr model ages of 19.6-23.2 Ma). The test of saturation for the pore fluids specifies the equilibrium state of the present mineralogical assemblage. Seawater-rock modeling specifies that clinoptilolite precipitates from the dissolution of biogenic silica, which reacts with clay minerals. The amount of silica (opal-A) involved in the reaction has to be significant enough, at least 10 wt.%, to account for the observed content of clinoptilolite occurring at the most zeolite-rich level. Modeling also shows that the observed amount of clinoptilolite (~19%) reflects an in situ and short-term reaction due to the high reactivity of primary biogenic silica (opal-A) until its complete depletion. The episodic occurrence of these well-lithified zeolite-rich levels is consistent with the occurrence of seismic reflectors, particularly the P2 seismic sequence boundary located at 1115 mbsf depth and dated as 23.2 Ma. The age range of most zeolitic sedimentary levels (biostratigraphic ages of 21.5-22 Ma) correlates well with that of the early Miocene glaciation Mi-1 and Mi-1a global events. Thus, the clinoptilolite occurrence in the shallow carbonate platform environment far from volcanogenic supply, or in other sensitive marine areas, is potentially a significant new proxy for paleoproductivity and oceanic global events, such as the Miocene events, which are usually recognized in deep-sea pelagic sediments and high latitude deposits.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lesser Antilles arc is a particularly interesting island arc because it is presently very active, it is located perpendicular to the South American continent and its chemical and isotopic compositions display a strong north-south gradient. While the presence in the south of a thick pile of sedimentary material coming from the old South American continent has long been suspected to explain the geochemical gradient, previous studies failed to demonstrate unambiguously a direct link between the arc lava compositions and the subducted sediment compositions. Here, we present new Nd, Sm, Th, U and Pb concentrations and Nd-Pb isotopic data for over 60 sediments from three sites located in the fore arc region of the Lesser Antilles arc. New data for DSDP Site 543 drill core located east of Dominica Island complement the data published by White et al. (1985, doi:10.1016/0016-7037(85)90082-1) and confirm their relatively uniform isotopic compositions (i.e., 206Pb/204Pb between 19.13 and 19.53). In contrast, data obtained on DSDP Site 144 located further south, on the edge of the South American Rise and on sediments from Barbados Island are much more variable (206Pb/204Pb ranges from 18.81 to 27.69). The very radiogenic Pb isotopic compositions are found in a 60 m thick black shale unit, which has no age equivalent in the Site 543 drill core. We interpret the peculiar composition of the southern sediments as being due to two factors, (a) the proximity of the South American craton, which contributes coarse grain old detrital material that does not travel far from the continental shelf, and (b) the presence of older sediments including the thick black shale unit formed during Oceanic Anoxic events 2 and 3. The north-south isotopic change known along the Lesser Antilles arc can be explained by the observed geographical changes in the composition of the subducted sediments. About 1% contamination of the mantle wedge by Site 543 sediments explains the composition of the northern islands while up to 10% sediments like those of Site 144 is required in the source of the southern island lavas. The presence of black shales in the subducted pile provides a satisfactory explanation for the very low Delta8/4 values that characterize the Lesser Antilles arc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the investigation of samples recovered during Cruise 25 of the R/V ''Akademik Nikolai Strakhov'', the character of magmatism was determined in the flank parts of the rift zone at the 74°05'N and 73°50'N region, where the direction of the rift valley changes from the north-northwest in the Knipovich Ridge to the northeast-trending structures of the Mohns Ridge. It was shown that the tholeiitic magmas of this region shows all the geochemical characteristics of TOR-2, which is typical of the Mohns Ridge and most oceanic rift zones worldwide, and differ from the basalts of the Knipovich Ridge, which are assigned to a shallower type of tholeiitic magmatism (Na-TOR). The persistent depletion of the magmas in terms of lithophile element contents and radiogenic isotope ratios of Sr, Nd, and Pb reflects the conditions of their formation during the ascent of the depleted oceanic mantle, which has occurred without significant complications since the early stages of the formation of the Mohns Ridge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nd and Pb isotopes were measured on the fine fraction of one sediment core drilled off southern Greenland. This work aims to reconstruct the evolution of deep circulation patterns in the North Atlantic during the Holocene on the basis of sediment supply variations. For the last 12 kyr, three sources have contributed to the sediment mixture: the North American Shield, the Pan-African and Variscan crusts, and the Mid-Atlantic Ridge. Clay isotope signatures indicate two mixtures of sediment sources. The first mixture (12.2-6.5 ka) is composed of material derived from the North American shield and from a "young" crustal source. From 6.5 ka onward the mixture is characterized by a young crustal component and by a volcanic component characteristic of the Mid-Atlantic Ridge. Since the significant decrease in proximal deglacial supplies, the evolution of the relative contributions of the sediment sources suggests major changes in the relative contributions of the deep water masses carried by the Western Boundary Undercurrent over the past 8.4 kyr. The progressive intensification of the Western Boundary Undercurrent was initially associated mainly with the transport of the Northeast Atlantic Deep Water mass until 6.5 ka and with the Denmark Strait Overflow Water thereafter. The establishment of the modern circulation at 3 ka suggests a reduced influence of the Denmark Strait Overflow Water, synchronous with the full appearance of the Labrador Seawater mass. Our isotopic data set emphasizes several changes in the relative contribution of the two major components of North Atlantic Deep Water throughout the Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A suite of volcanic and volcaniclastic rocks selected from Ocean Drilling Program Leg 134 Sites 832 and 833 in the North Aoba Basin (Central New Hebrides Island Arc) has been analyzed for Sr, Nd, and Pb isotopes to investigate the temporal evolution of the arc magmatism. This arc shows two unusual features with respect to other western Pacific arcs: 1) subduction is eastdirected; and 2) a major submarine ridge, the d'Entrecasteaux Zone, has been colliding almost perpendicularly with the central part of the arc since about 3 Ma. Volcanic rocks from the upper parts of both holes, generated during the last 2 m.y., show higher 87Sr/86Sr and significantly lower 206Pb/204Pb and 143Nd/144 Nd values compared to those volcanics erupted before the collision of this ridge, as represented by samples from the lower section of both holes, or remote from the collisional region, in the southern part of the arc. These isotopic differences in the respective mantle sources cannot be interpreted in terms of geochemical input into the mantle wedge induced by the collision itself. Rather, they require long term (>500 m.y.) enrichment processes. The enriched mantle source could be, on a regional scale, a DUPAL-type reservoir with strong similarities to the source of Indian Ocean basalts. Isotopic analyses of drilled rocks from the DEZ show that the anomalous, enriched mantle component is not derived from this feature. We currently cannot identify a source for this enriched component, but note that it also exists in Lau Basin backarc volcanics, lavas from the West Philippine Sea, and also some lavas from the Mariana-Izu-Bonin arc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A composite late Maastrichtian (65.5 to 68.5 Ma) marine osmium (Os) isotope record, based on samples from the Southern Ocean (ODP Site 690), the Tropical Pacific Ocean (DSDP Site 577), the South Atlantic (DSDP Site 525) and the paleo-Tethys Ocean demonstrates that subaerially exposed pelagic carbonates can record seawater Os isotope variations with a fidelity comparable to sediments recovered from the seafloor. New results provide robust evidence of a 20% decline in seawater 187Os/188Os over a period of about 200 kyr early in magnetochron C29r well below the Cretaceous-Paleogene Boundary (KPB), confirming previously reported low-resolution data from the South Atlantic Ocean. New results also confirm a second more rapid decline in 187Os/188Os associated with the KPB that is accompanied by a significant increase in Os concentrations. Complementary platinum (Pt) and iridium (Ir) concentration data indicate that the length scale of diagenetic remobilization of platinum group elements from the KPB is less than 1 m and does not obscure the pre-KPB decline in 187Os/188Os. Increases in bulk sediment Ir concentrations and decreases in bulk carbonate content that coincide with the Os isotope shift suggest that carbonate burial flux may have been lower during the initial decline in 187Os/188Os. We speculate that diminished carbonate burial rate may have been the result of ocean acidification caused by Deccan volcanism.