765 resultados para southern Yellow Sea
Resumo:
Up to the end of the eighties the main source of deep water masses in the Ionian Basin was the southern Adriatic Sea. However, during the nineties a dramatic climatic change took place in the eastern Mediterranean Sea: the Eastern Mediterranean Transient (EMT). Since then, deep water has been formed by waters originating in the Aegean Sea. Expeditions carried out in this region in recent years indicate that the process of deep water formation might reverse again. To what extent this assumption applies and what characteristics the deep water in the Ionian Sea exhibit nowadays, should be determined on the cruise. The process of a re-reversal of abyssal water production in the Ionian Sea is a long-term process and must therfore be monitored for several years. Hence, this cruise is part of a series of cruises investigating this question (POS98, M71/3, MSM13/1-2, MSM15/4). The investigations were carried out by means of CTD/lADCP measurements.
Resumo:
Laminated sediments deposited under anoxic bottom waters in the Japan Sea during the last glacial maximum (LGM) contain extremely well preserved calcareous microfossils and eolian carbonates. The radiocarbon age-difference between bulk sediment and monospecific planktonic foraminifera in discrete laminae from a core in the southern Japan Sea implies that ~40% of the total carbonates in the sediments at the LGM are of eolian origin. Extrapolation of this result yields a rate of supply of eolian carbonates of ~2800 tons/d to the entire Japan Sea during the LGM. The climatic significance of this flux potentially lies in its broader geographic extension, particularly in the interaction of the carbonate-bearing dust with shallow, corrosive North Pacific waters and with rain in the atmosphere. By increasing the alkalinity of such waters and by enhancing the biological pump the dust flux could have increased CO2 absorption by both the ocean and rain during the LGM.
Resumo:
The end of the last interglacial period, ~118 kyr ago, was characterized by substantial ocean circulation and climate perturbations resulting from instabilities of polar ice sheets. These perturbations are crucial for a better understanding of future climate change. The seasonal temperature changes of the tropical ocean, however, which play an important role in seasonal climate extremes such as hurricanes, floods and droughts at the present day, are not well known for this period that led into the last glacial. Here we present a monthly resolved snapshot of reconstructed sea surface temperature in the tropical North Atlantic Ocean for 117.7±0.8 kyr ago, using coral Sr/Ca and d18O records. We find that temperature seasonality was similar to today, which is consistent with the orbital insolation forcing. Our coral and climate model results suggest that temperature seasonality of the tropical surface ocean is controlled mainly by orbital insolation changes during interglacials.
Resumo:
Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climate model simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales, whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean-atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.