730 resultados para background deep sea


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sediments from the Argo Abyssal Plain (AAP), northwest of Australia, are the oldest known from the Indian Ocean and were recovered from ODP Site 765 and DSDP Site 261. New biostratigraphic and sedimentologic data from these sites, as well as reinterpretations of earlier findings, indicate that basal sediments at both localities are of Late Jurassic age and delineate a history of starved sedimentation punctuated by periodic influx of calcareous pelagic turbidites. Biostratigraphy and correlation of Upper Jurassic-Lower Cretaceous sediments is based largely on calcareous nannofossils. Both sites yielded variably preserved nannofossil successions ranging from Tithonian to Hauterivian at Site 765 and Kimmeridgian to Hauterivian at Site 261. The nannofloras are comparable to those present in the European and Atlantic Boreal and Tethyan areas, but display important differences that reflect biogeographic differentiation. The Argo region is thought to have occupied a position at the southern limit of the Tethyan nannofloral realm, thus yielding both Tethyan and Austral biogeographic features. Sedimentary successions at the two sites are grossly similar, and differences largely reflect Site 765's greater proximity to the continental margin. Jurassic sediments were deposited at rates of about 2 m/m.y. near the carbonate compensation depth (CCD) and contain winnowed concentrations of inoceramid prisms and nannofossils, redeposited layers rich in calcispheres and calcisphere debris, manganese nodules, and volcanic detritus. Lower Cretaceous and all younger sediments accumulated below the CCD at rates that were highest (about 20 m/m.y.) during mid-Cretaceous and Neogene time. Background sediment in this interval is noncalcareous claystone; turbidites dominate the sequence and are thicker and coarser grained at Site 765. AAP turbidites consist mostly of calcareous and siliceous biogenic components and volcanogenic smectite clay; they were derived from relatively deep parts of the continental margin that lay below the photic zone, but above the CCD. The Jurassic-Lower Cretaceous section is about the same thickness across the AAP; turbidites in this interval appear to have had multiple sources along the Australian margin. The Upper Cretaceous-Cenozoic section, however, is three times thicker at Site 765 than at Site 261; turbidites in this interval were derived predominantly from the south. Patterns of sedimentation across the AAP have been influenced by shifts in sea level, the CCD, and configuration of the continental margin. Major pulses of calcareous turbidite deposition occurred during Valanginian, Aptian, and Neogene time-all periods of eustatic lowstands and depressed CCD levels. Sediment redeposited on the AAP has come largely from the Australian outer shelf, continental slope, or rise, rather than the continent itself. Most terrigenous detritus was trapped in epicontinental basins that have flanked northwestern Australia since the early Mesozoic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Compressional wave velocities measured in gabbroic rocks and metabasites recovered from Site 293 of Leg 31 in the Philippine Sea (on the Central Basin Fault) are correlative with seismic velocities determined for Layer 3. The lower crustal origin for these rocks suggested by this data is further supported by the similarity between these samples, dredge haul samples from fracture zones in the main ocean basins and rocks found in ophiolite complexes. These plutonic rocks were possibly introduced to the sea floor by movements along the Central Basin Fault, a major tectonic feature in the Philippine Sea, or formed as part of new ocean crust within a leaky transform fault.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of 'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Benthic fluxes and pore-water compositions of silicic acid, nitrate and phosphate were investigated for surface sediments of the abyssal Arabian Sea during four cruises (1995-1998). Five sites located in the northern (NAST), western (WAST), central (CAST), eastern (EAST), and southern (SAST) Arabian Sea were revisited during intermonsoonal periods after the NE- and SW-Monsoon. At these sites, benthic fluxes of remineralized nutrients from the sediment to the bottom water of 36-106, 102-350 and 4-16 mmol/m**2/yr were measured for nitrate, silicic acid and phosphate, respectively. The benthic fluxes and pore-water compositions showed a distinct regional pattern. Highest fluxes were observed in the western and northern region of the Arabian Sea, whereas decreasing fluxes were derived towards the southeast. At WAST, the general temporal pattern of primary production, related to the NE- and SW-Monsoon, is reflected by benthic fluxes. In contrast, at sites NAST, SAST, CAST, and EAST a temporal pattern of fluxes in response to the monsoon is not obvious. Our results reveal a clear coupling between the general regional pattern of production in surface waters and the response of the benthic environment, as indicated by the flux of remineralized nutrients, though a spatially differing degree of decoupling during transport and remineralization of particulate organic matter and biogenic opal was observed. This has to be taken into account regarding budget calculations and paleoceanographic topics.