441 resultados para West-Africa


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study of chemical composition of 26 samples collected at depths from 400 to 1400 m on vertex surfaces of the Southeast Indian Ridge, Mascarene Ridge, Madagascar Ridge, and Mozambique Ridge, as well as on the upper part of the Southeast Africa continental slope showed that the samples represent three groups of rocks: 1) low phosphate or phosphate-free ferromanganese rocks, 2) phosphate ferromanganese rocks 3) phosphorites and phosphatized limestones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical profiles of light scattering at a right angle and turbidity profiles in seawater indicating suspended matter concentration in the near-bottom nepheloid layer (NNL) were measured simultaneously with temperature, salinity, and density profiles at the continental slope off the northwestern Africa. About 100 stations 5' apart in latitude and longitude were carried out over an ocean area of 6100 sq. km. Special features of the NNL variability in the area were analyzed. It was found that some structural parameters of the NNL (maximum transparency depth, that is the upper boundary of NNL; NNL thickness; maximum and total turbidity) correlate with ocean depth. On the average, thickness of the NNL in the area is 20-40% of the ocean depth. At most stations the NNL is fairly strong. In the shelf region NNL turbidity was influenced by the intensive near-shore upwelling. Formation of ''high-energy near-bottom layers'' in the shelf region resulted from passing of a mesoscale cyclonic eddy that caused redistribution of measured quantities within the entire water column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic foraminiferal d18O and Mg/Ca of sediment cores off tropical NW Africa are used to study the properties of Atlantic central waters during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS1). We combined our core top data with published results to develop a new Mg/Ca-temperature calibration for Planulina ariminensis, which shows a Mg/Ca-temperature sensitivity of 0.19 mmol/mol per °C. Estimates of the LGM and HS1 thermocline temperatures are comparable to the present-day values between 200 and 400 m water depth, but were 1.2-1.5°C warmer at 550-570 m depth. The HS1 thermocline waters (200-570 m depth) did not show any warming relative to the LGM. This is in contrast to previous climate model studies, which concluded that tropical Atlantic thermocline waters warmed significantly when Atlantic meridional overturning circulation was reduced. However, our results suggest that thermocline temperatures of the northeastern tropical Atlantic show no pronounced sensitivity to changes in the thermohaline circulation during glacial periods. In contrast, we find a significant increase in thermocline-water salinity during the LGM (200-550 m depth) and HS1 (200-400 m depth) with respect to the present-day, which we relate to changes in the wind-driven circulation. We infer that the LGM thermocline (200-550 m depth) and the HS1 upper thermocline (200-400 m depth) in the northeastern tropical Atlantic was ventilated by surface waters from the North Atlantic rather than the southern-sourced waters. This suggests that the frontal zone between the modern South Atlantic and North Atlantic Central Waters was probably shifted southward during the LGM and HS1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diatom abundance and species composition were quantitatively studied in two latest Quaternary (~130 ka to the Present) sequences from the continental margin of northwest Africa. Off this region, coastal upwelling is well developed under the influence of the NE trade winds. Variations in diatom abundance in these cores are inferred to represent changes caused by varying degrees of the upwelling fertility. Times of high productivity are marked by high relative frequencies of Chaetoceros, while low productivity is marked by the dominance of Aulacoseira granulata. Upwelling increased during glacial episodes (isotopic stages 2-4 and 6) relative to isotopic stages 1 and 5. During the late Holocene, primary productivity levels are similar to those for Stage 5, but in the early Holocene upwelling intensities seem to have been weaker than today. The paleoproductivity reconstruction based on the diatom record is supported by paleoproductivity estimations based on the organic carbon content of the sediments (Sarnthein et al., 1987).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For years, various indices of seasonal West African precipitation have served as useful predictors of the overall tropical cyclone activity in the Atlantic Ocean. Since the mid-1990s, the correlation unexpectedly deteriorated. In the present study, statistical techniques are developed to describe the nonstationary nature of the correlations between annual measures of Atlantic tropical cyclone activity and three selected West African precipitation indices (namely, western Sahelian precipitation in June-September, central Sahelian precipitation in June-September, and Guinean coastal precipitation in the preceding year's August-November period). The correlations between these parameters are found to vary over the period from 1921 to 2007 on a range of time scales. Additionally, considerable year-to-year variability in the strength of these correlations is documented by selecting subsamples of years with respect to various meteorological factors. Broadly, in years when the environment in the main development region is generally favorable for enhanced tropical cyclogenesis (e.g., when sea surface temperatures are high, when there is relatively little wind shear through the depth of the troposphere, or when the relative vorticity in the midtroposphere is anomalously high), the correlations between indices of West African monsoon precipitation and Atlantic tropical cyclone activity are considerably weaker than in years when the overall conditions in the region are less conducive. Other more remote climate parameters, such as the phase of the Southern Oscillation, are less effective at modulating the nature of these interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrogen isotopic composition of plant leaf-wax n-alkanes (dDwax) is a novel proxy for estimating dD of past precipitation (dDp). However, vegetation life-form and relative humidity exert secondary effects on dDwax, preventing quantitative estimates of past dDp. Here, we present an approach for removing the effect of vegetation-type and relative humidity from dDwax and thus for directly estimating past dDp. We test this approach on modern day (late Holocene; 0-3 ka) sediments from a transect of 9 marine cores spanning 21°N-23°S off the western coast of Africa. We estimate vegetation type (C3 tree versus C4 grass) using d13C of leaf-wax n-alkanes and correct dDwax for vegetation-type with previously-derived apparent fractionation factors for each vegetation type. Late Holocene vegetation-corrected dDwax (dDvc) displays a good fit with modern-day dDp, suggesting that the effects of vegetation type and relative humidity have both been removed and thus that dDvc is a good estimate of dDp. We find that the magnitude of the effect of C3 tree - C4 grass changes on dDwax is small compared to dDp changes. We go on to estimate dDvc for the mid-Holocene (6-8 ka), the Last Glacial Maximum (LGM; 19-23 ka) and Heinrich Stadial 1 (HS1; 16-18.5 ka). In terms of past hydrological changes, our leaf-wax based estimates of dDp mostly reflect changes in wet season intensity, which is complementary to estimates of wet season length based on leaf-wax d13C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molybdenum and vanadium were analysed in 9 scediment cores recovered from the continental slope and rise off NW Africa. Additionall chemical and sedimentological parameters as well as isotope stage boundaries were available for the same core profiles from other investigations. Molybdenum, ranging between <1 and 10 ppm, occurs in two associateions, either with organic carbon and sulphides in sediments with reducing conditions or with Mn oxides in oxidized near-surface core sections. Highest values (between 4 and 10 ppm Mo) are found in sulphide-rich core sections deposited during glacial times in a core from 200 m water depth. The possibility of anoxic near-bottom water conditions prevailing at thhis site during certain glacial intervals is discussed. In oxidized near-surface core sections, the diagenetic mobility of Mo becomes evident from strong Mo enrichment together with Mn oxides (values up to 4 ppm Mo). This enrichment is probably due to coprecipitation and/or adsorption of Mo from interstitial water to the diagenetically forming Mn oxides. The close relation between Mo and Corg results in strongly covarying sedimentation rates in both components reaching up to 10 times the rates in glacial compared to interglacial core sections. Vanadium (values between 20 and 100 ppm) does not show clear relations to climate and near-bottom or sediment milieu. It occurs mainly bound to the fine grained terrigenous fraction, associated with aluminium silicates (clay minerals) and iron oxides. Additionally positive covariation of vanadium with phosphorus in most core profiles suggest that some V may be bound to phosphates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A. Continental slope sediments off Spanish-Sahara and Senegal contain up to 4% organic carbon and up to 0.4% total nitrogen. The highest concentrations were found in sediments from water depths between 1000 and 2000 m. The regional and vertical distribution of organic matter differs significantly. Off Spanish-Sahara the organic matter content of sediment deposited during glacial times (Wuerm, Late Riss) is high whereas sediments deposited during interglacial times (Recent, Eem) are low in organic matter. Opposite distribution was found in sediments off Senegal. The sediments contain 30 to 130 ppm of fixed nitrogen. In most sediments this corresponds to 2-8 % of the total nitrogen. Only in sediments deposited during interglacial times off Spanish-Sahara up to 20 % of the total nitrogen is contained as inorganically bound nitrogen. Positive correlations of the fixed nitrogen concentrations to the amounts of clay, alumina, and potassium suggest that it is primarily fixed to illites. The amino acid nitrogen and hexosamine nitrogen account for 17 to 26 % and 1.3 to 2.4 %, respectively of the total nitrogen content of the sediments. The concentrations vary between 200 and 850 ppm amino acid nitrogen and 20 to 70 ppm hexosamine nitrogen, both parallel the fluctiations of organic matter in the sediment. Fulvic acids, humic acids, and the total organic matter of the sediments may be clearly differentiated from one another and their amino acid and hexosamine contents and their amino acid composition: a) Fulvic acids contain only half as much amino acids as humic acids b) The molar amino acid/hexosamine ratios of the fulvic acids are half those of the humic acids and the total organic matter of the sediment c) The amino acid spectra of fulvic acids are characterized by an enrichment of aspartic acid, alanine, and methionine sulfoxide and a depletion of glycine, valine, isoleucine, leucine, tyrosine, phenylalanine, lysine, and arginine compared to the spectra of the humic acids and those of the total organic matter fraction of the sediment. d) The amino acid spectra of the humic acids and those of the total organic matter fraction of the sediments are about the same with the exception that arginine is clearly enriched in the total organic matter. In general, as indicated by the amino compounds humic acids resemble closer the total organic matter composition than the low molecular fulvic acids do. This supports the general idea that during the course of diagenesis in reducing sediments organic matter stabilizes from a fulvic-like structure to humic-like structure and finally to kerogen. The decomposition rates of single aminio acids differ significantly from one another. Generally amino acids which are preferentially contained in humic acids and the total organic matter fraction show a smaller loss with time than those preferably well documented in case of the basic amino acids lysine and arginine which- although thermally unstable- are the most stable amino acids in the sediments. A favoured incorporation of these compounds into high molecular substances as well as into clay minerals may explain their relatively high "stability" in the sediment. The nitrogen loss from the sediments due to the activity of sulphate-reducing bacteria amounts to 20-40 % of the total organic nitrogen now present. At least 40 % of the organic nitrogen which is liberated by sulphate-reducing bacteria can be explained ny decomposition of amino acids alone. B. Deep-sea sediments from the Central Pacific The deep-seas sediments contain 1 to 2 orders of magnitude less organic matter than the continental slope sediments off NW Africa, i.e. 0.04 to 0.3 % organic carbon. The fixed nitrogen content of the deep-sea sediments ranges from 60 to 270 ppm or from 20 to 45 % of the total nitrogen content. While ammonia is the prevailing inorganic nitrogen compound in anoxic pore waters, nitrate predominates in the oxic environment of the deep-sea sediments. Near the sediment/water interface interstital nitrate concentrations of around 30 µg-at. N/l were recorded. These generally increase with sediment depth by 10 to 15 µg-at. NO3- N/l. This suggests the presence of free oxygen and the activity of nitrifying bacteria in the interstitial waters. The ammonia content of the interstitial water of the oxic deep-sea sediments ranges from 2 to 60 µg-at. N/l and thus is several orders of magnitude less than in anoxic sediments. In contrast to recorded nitrate gradients towards the sediments/water interface, there are no ammonia concentration gradients. However, ammonia concentrations appear to be characteristic for certain regional areas. It is suggested that this regional differentiation is caused by ion exchange reactions involving potassium and ammonium ions rather than by different decomposition rates of organic matter. C. C/N ratios All estimated C/N ratios of surface sediments vary between 3 and 9 in the deep-sea and the continental margin, respectively. Whereas the C/N ratios generally increase with depth in the sediment cores off NW Africa they decrease in the deep-sea cores. The lowest values of around 1.3 were found in the deeper sections of the deep-sea cores, the highest of around 10 in the sediments off NW Africa. The wide range of the C/N ratios as well as their opposite behaviour with increasing sediment depth in both the deep-sea and continental margin sediment cores, can be attributed mainly to the combination of the following three factors: 1. Inorganic and organic substances bound within the latticed of clay minerals tend to decrease the C/N ratios. 2. Organic matter not protected by absorption on the clay minerals tends to increase C/N ratios 3. Diagenetic alteration of organic matter by micro-organisms tends to increase C/N ratios through preferential loss of nitrogen The diagenetic changes of the microbially decomposable organic matter results in both oxic and anoxic environments in a preferential loss of nitrogen and hence in higher C/N ratios of the organic fraction. This holds true for most of the continental margin sediments off NW Africa which contain relatively high amounts of organic matter so that factors 2 and 3 predominate there. The relative low C/N ratios of the sediments deposited during interglacial times off Spanish-Sahara, which are low in organic carbon, show the increasing influence of factor 1 - the nitrogen-rich organic substances bound to clay minerals. In the deep-sea sediments from the Central Pacific this factor completely predominates so that the C/N rations of the sediments approach that of the substance absorbed to clay minerals with decreasing organic matter content. In the deeper core sections the unprotected organic matter has been completely destroyed so that the C/N ratios of the total sediments eventually fall into the same range as those of the pure clay mineral fraction.