398 resultados para Vastus Medialis Obliquus
Resumo:
Holes 603C and 604 of DSDP Leg 93 were drilled on the western Atlantic continental rise at water depths of 4633 m and 2364 m, respectively. In Hole 603C, a nearly continuous, undisturbed, and complete section of Pliocene and lower Pleistocene sediments was recovered by hydraulic piston coring; in Hole 604, a section of uppermost Miocene to Pleistocene sediments was incompletely recovered by rotary coring. In order to reconstruct the Pliocene and Pleistocene history of isotopic variations, 139 oxygen and carbon isotope values were determined for planktonic and monospecific benthic foraminifer samples from these holes. Large parts of the Pleistocene history could not, however, be documented because sample intervals were large and sediments at Site 604 were redeposited. Time correlation is based on magnetostratigraphic (Hole 603C) and micropaleontologic (Hole 603C, Site 604) interpretation. Stable isotope analyses were carried out on the planktonic foraminiferal species Globigerinoides ruber, G. obliquus, and Globorotalia inflata from Hole 603C (48 analyses) and from Site 604 (48 analyses); at Site 604, the benthic foraminifer Uvigerina peregrina (43 analyses) was also studied through the section. Age calibration for Hole 603C is based on the magnetostratigraphy of Canninga et al. (1987; doi:10.2973/dsdp.proc.93.130.1987), which uses the time scale of Lowrie and Alvarez (1981).
Resumo:
A three-fold expansion of the Antarctic ice sheet at 13.60, 12.82, and 11.60 Ma has been inferred from delta18O maxima analyzed in planktonic and benthic foraminiferal tests, although accompanying changes in sea surface temperature have not been detailed. We present estimated changes in middle Miocene surface-water temperatures based on analysis of delta18O in planktonic foraminifera collected at mid-latitude Deep Sea Drilling Project sites in the North Atlantic and South Pacific oceans. We also identify periods of ice-sheet growth based on comparisons of benthic and planktonic foraminiferal delta18O values. Our results indicate: (1) a distinct cooling of the sea surface from 13.6 to 13.5 Ma immediately following a peak in ice volume at 13.6 Ma, (2) a cooling of the sea surface during a period of increasing ice volume from 13.2 to 13.0 Ma, and (3) a development of the Antarctic ice sheet during a period of cooling of the sea surface centered at 11.6 Ma.
Resumo:
Stable isotopic and micropaleontological studies were made of selected sapropels (organic-rich sediments) deposited in the Mediterranean Sea during the last 5.0 m.y. to determine the processes responsible for their formation. Distinct isotopic and faunal changes occur across sapropels of late Pleistocene, early Pleistocene and latest Pliocene age, while smaller isotopic changes and more stable faunal assemblages are associated with the early and mid-late Pliocene sapropels. The large d18O depletions and euryhaline fauna associated with latest Pliocene-Pleistocene sapropels supports a density stratification model with a low salinity surface layer. In contrast, early Pliocene and mid-late Pliocene sapropels appear to have been formed as the result of sluggish circulation and low oxygen contents in bottom waters of the eastern Mediterranean due to the stable, warm climatic conditions of that time period.
Resumo:
Over 30 first and last occurrence (FO and LO, respectively) planktonic foraminifer datums were recognized from the Oligocene-Miocene section of Ocean Drilling Program (ODP) Site 1148. Most datum levels occur in similar order as, and are by correlation as probably synchronous with, their open-ocean records. Several datum levels represent local bioevents resulting from dissolution and Site 1148's unique paleoceanographic setting in the northern South China Sea. An age of 9.5-9.8 Ma is estimated for the local LO of Globoquadrina dehiscens (257 meters composite depth [mcd]), whereas the local LO of Globorotalia fohsi s.l. (301 mcd) is projected to be at ~13.0 Ma and the local FO of Globigerinatella insueta (367 mcd) is projected to be at ~18.0 Ma. The combined planktonic foraminifer and nannofossil results indicate that the Oligocene-Miocene section at Site 1148 is not complete. Unconformities up to 2-3 m.y. in duration, occurring at and before the Oligocene/Miocene boundary (OHS1, OHS2, OHS3, and OHS4 = MHS1), are associated with slump deposits between 457 and 495 mcd that signal tectonic instability during the transition from rifting to spreading in the South China Sea. Shorter unconformities of <0.5 m.y. duration that truncate the Miocene section were more likely to have been caused by sea-bottom erosion as well as dissolution. A total of 12 Miocene unconformities, MHS1 through MHS12, are mainly affected by dissolution and an elevated carbonate compensation depth (CCD) during Miocene third-order glaciations recorded in deep-sea positive oxygen isotope Mi glaciation events. Respectively, they fall at ~457 mcd (MHS1 = Mi-1), 407 mcd (MHS2 = Mi-1a), 385 mcd (MHS3 = Mi-1aa), 366 mcd (MHS4 = Mi-1b), 358 mcd (MHS5 = MLi-1), 333 mcd (MHS6 = Mi-2), 318 mcd (MHS7 = MSi-1), 308 mcd (MHS8 = Mi-3), 295 mcd (MHS9 = Mi-4), 288 mcd (MHS10 = Mi-5), 256 mcd (MHS11 = Mi-6), and 250 mcd (MHS12 = Mi-7). The correlation of these unconformities with Mi events indicates that some related driving mechanisms have been operating, causing deepwater circulation changes concomitantly in world oceans and in the marginal South China Sea.