371 resultados para Rule of the road at sea.
Resumo:
Samples from a pristine raised peat bog runoff in Austria, the Tannermoor creek, were analysed for their iron linked to natural organic matter (NOM) content. Dissolved organic carbon < 0.45 µm (DOC) was 41 to 64 mg/L, iron 4.4 to 5.5 mg/L. Samples were analysed applying asymmetric field flow fractionation (AsFlFFF) coupled to UV-Vis absorption, fluorescence and inductively coupled plasma mass spectrometry (ICP-MS). The samples showed an iron peak associated with the NOM peak, one sample exhibiting a second peak of iron independent from the NOM peak. As highland peat bogs with similar climatic conditions and vegetation to the Tanner Moor are found throughout the world, including areas adjacent to the sea, we examined the behaviour of NOM and iron in samples brought to euhaline (35 per mil) conditions with artificial sea salt. The enhanced ionic strength reduced NOM by 53% and iron by 82%. Size exclusion chromatography (SEC) of the samples at sea-like salinity revealed two major fractions of NOM associated with different iron concentrations. The larger one, eluting sharply after the upper exclusion limits of 4000-5000 g/mol, seems to be most important for iron chelating. The results outline the global importance of sub-mountainous and mountainous raised peat bogs as a source of iron chelators to the marine environment at sites where such peat bogs release their run-offs into the sea.
Resumo:
Results of measurements of Cs-137 and Co-60 concentrations in bottom sediments of the Northwestern Black Sea indicate inhomogenity of their distribution both over the studied area and along sediment cores. Intermittency of sediment layers with different concentration of radionuclides in the cores reflects active horizontal movements and redistribution of sediments on the shelf and continental slope. As a result sediment layers dated by the Chernobyl mark as seven years old were found in the 5-7 cm depth layer. Maximum Cs-137 concentration in the surface sedimentary layer on the shelf was 42 mBq/g. Maximum Co-60 concentration of 1320 mBq/g was measured due to a hot particle. No correlation was found between Cs-137 and the Co-60 contents.
Resumo:
A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.
Resumo:
Coccolithophore contributions to the global marine carbon cycle are regulated by the calcite content of their scales (coccoliths), and the relative cellular levels of photosynthesis and calcification. All three of these factors vary between coccolithophore species, and with response to the growth environment. Here, water samples were collected in the northern basin of the South China Sea (SCS) during summer 2014 in order to examine how environmental variability influenced species composition and cellular levels of calcite content. The vertical structure of the coccolithophore community was strongly regulated by mesoscale eddies. All living coccolithophores produced within the euphotic zone (1 % of surface irradiance), and Florisphaera profunda was a substantial coccolithophore and coccolith-calcite producer in the Deep Chlorophyll-a Maximum (DCM), especially in most oligotrophic anti-cyclonic eddy centers. Placolith-bearing coccolithophores, plus F. profunda, and other larger and numerically rare species made almost equal contributions to coccolith-based calcite in the water column. For Emiliania huxleyi biometry measurements, coccolith size positively correlated with nutrients, and it is suggested that coccolith length is influenced by nutrient and light related growth rates. However, larger sized coccoliths were related to low pH and calcite saturation, although it is not a simple cause and effect relationship. Genotypic or ecophenotypic variation may also be linked to coccolith size variation.
Resumo:
We analyzed hydrographic data from the northwestern Weddell Sea continental shelf of the three austral winters 1989, 1997, and 2006 and two summers following the last winter cruise. During summer a thermal front exists at ~64° S separating cold southern waters from warm northern waters that have similar characteristics as the deep waters of the central basin of the Bransfield Strait. In winter, the whole continental shelf exhibits southern characteristics with high Neon (Ne) concentrations, indicating a significant input of glacial melt water. The comparison of the winter data from the shallow shelf off the tip of the Antarctic Peninsula, spanning a period of 17 yr, shows a salinity decrease of 0.09 for the whole water column, which has a residence time of <1 yr. We interpret this freshening as being caused by a combination of reduced salt input due to a southward sea ice retreat and higher precipitation during the late 20th century on the western Weddell Sea continental shelf. However, less salinification might also result from a delicate interplay between enhanced salt input due to sea ice formation in coastal areas formerly occupied by Larsen A and B ice shelves and increased Larsen C ice loss.
Resumo:
We present 30 new planktonic foraminiferal census data of surface sediment samples from the South China Sea, recovered between 630 and 2883 m water depth. These new data, together with the 131 earlier published data sets from the western Pacific, are used for calibrating the SIMMAX-28 transfer function to estimate past sea-surface temperatures. This regional SIMMAX method offers a slightly better understanding of the marginal sea conditions of the South China Sea than the linear transfer function FP-12E, which is based only on open-ocean data. However, both methods are biased toward the tropical temperature regime because of the very limited data from temperate to subpolar regions. The SIMMAX formula was applied to sediment core 17940 from the northeastern South China Sea, with sedimentation rates of 20-80 cm/ka. Results revealed nearly unchanged summer temperatures around 28°C for the last 30 ky, while winter temperatures varied between 19.5°C in the last glacial maximum and 26°C during the Holocene. During Termination 1A, the winter estimates show a Younger Dryas cooling by 3°C subsequent to a temperature optimum of 24°C during the Bölling=Alleröd. Estimates of winter temperature differences between 0 and 100 m water depth document the seasonal variations in the thickness of the mixed layer and provide a new proxy for estimating past changes in the strength of the winter monsoon.
Resumo:
Organic carbon in bays of the White Sea was studied for the first time in 1987. Bays of various types in the Kandalaksha Gulf and the Onega Gulf were investigated. Concentration of C_org ranged from 3.5 to 9 mg/l. The highest weighted-mean concentration of C_org occurred in shallow bays of the Onega Gulf (Suma Bay - 6.17 mg/l, Kolezhma Bay - 5.25 mg/1); slightly lower levels occurred in the Soroka Bay (4.85 mg/l) and Kem' Bay (4.78 mg/l). The lowest concentrations were in deep bays of the Kandalaksha Gulf (Chupa Bay - 4.35 mg/l, Velikaya Salma Bay - 4.10 mg/l). As a rule C_org concentration decreases with depth in deep-water bays (but increases slightly in the thermocline layer). The key factor governing organic matter concentration in the bays of the Onega Gulf with river runoff is allochthonous terrigenous organic matter, as indicated by negative correlation of C_org with salinity (R=-0.83+/-0.07, p=0.96) and nonsignificant correlation with primary production.