943 resultados para Préalpes, Foraminifera, Briançonnais,


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Western Boundary Undercurrent (WBUC), off eastern America, is an important component of the Atlantic Meridional Overturning circulation and is the principal route for southward transport of North Atlantic waters and southward return of Southern Source Water (SSW). Here a direct flow speed proxy (mean grain size of the sortable silt) is used to infer the vigour of flow of the palaeo-WBUC at Blake Outer Ridge, (ODP Site 1060, depth 3481 m) during Marine Isotope Stage (MIS) 3. The overall shape of the flow speed proxy record shows a complex pattern of variability, with generally more vigorous flow and larger-scale flow variations between 35 and 60 ka than in the younger part of MIS 3 and MIS 2 (b35 ka). Six events of reduced bottom flow vigour (Slow Events, SEs) occur. These appear uncorrelated with Heinrich events, but are instead synchronous with the warming phases of Antarctic Warm Events A-1 to A-4 (with one new one, A-1a and one poorly defined, 'A-0'). This indicates that Antarctic climate exerts a stronger control on deep flow vigour in the North Atlantic during MIS 3 than Northern Hemisphere climate. The correspondence of SEs with Antarctic warming suggests a weaker WBUC flow due to reduced volume flux at SSW source or reduced SSW density. Because the variability of the lower limb of the WBUC was not connected to sharp North Atlantic changes in temperature, it is unlikely that the Dansgaard/Oeschger cycles were associated with a mode of MOC variation involving wholeocean overturn, but more likely with perturbations of only the shallow Glacial Gulf Stream-Glacial Northern Source Intermediate Water cell. Nutrient proxies (benthic carbon isotopes and Cd/Ca of Uvigerina peregrina) at this site show similar trends to the GRIP delta18O record. This correlation has previously been attributed mainly to hydrographic and flow changes but is here shown to be better explained by variations in surface ocean productivity and subsequent decomposition of 12C rich organic material on the sea floor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new isotopic data for sedimentary planktonic foraminifera, as well as for potential water column and sedimentary sources of neodymium (Nd), which confirm that the isotopic composition of the foraminifera is the same as surface seawater and very different from deep water and sedimentary Nd. The faithfulness with which sedimentary foraminifera record the isotopic signature of surface seawater Nd is difficult to explain given their variable and high Nd/Ca ratios, ratios that are often sedimentary foraminifera, ratios that are often much higher than is plausible for direct incorporation within the calcite structure. We present further data that demonstrate a similarly large range in Nd/Ca ratios in plankton tow foraminifera, a range that may be controlled by redox conditions in the water column. Cleaning experiments reveal, in common with earlier work, that large amounts of Nd are released by cleaning with both hydrazine and diethylene triamine penta-acetic acid, but that the Nd released at each step is of surface origin. While further detailed studies are required to verify the exact location of the surface isotopic signature and the key controls on foraminiferal Nd isotope systematics, these new data place the use of planktonic foraminifera as recorders of surface water Nd isotope ratios, and thus of variations in the past supply of Nd to the oceans from the continents via weathering and erosion, on a reasonably sure footing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied Ocean Drilling Program Site 1060 on the Blake Outer Ridge, which lies beneath the Gulf Stream. We focus on marine isotope stage 3, 60-25 thousand years before present (ka). Sea surface temperatures (SSTs) inferred both from foraminiferal fauna and alkenone ratios, as well as counts of iceberg melt-out debris and benthic stable isotope analyses, enable our record to be interpreted in terms of regional hydrographic changes as well as changing thermohaline circulation (THC). The observed SST record is consistent with the air temperature record from the Greenland ice cores. However, Site 1060 exhibits important differences in detail compared with the ice core record, and when compared to other sites within the North Atlantic, significant longitudinal differences emerge. At Site 1060 in the western Atlantic, all Greenland stadials (GS) whether associated with Heinrich events (HEs) or not, show a similar small amplitude of cooling; mean faunal-based SSTaug during GS is only 1.5°C colder than during Greenland interstadials (GIS). In addition, during GS the coldest SSTs are limited to apparently brief events. This is in contrast to several eastern Atlantic sites where HE stadials exhibit coolings that are enhanced by 2°C compared to other GS and where cold conditions are not restricted to cold pulses but cover 2 ka-long intervals. Furthermore, Site 1060 SSTs remained warm right through each interstadial, in contrast to the sustained and uniform cooling trend through interstadials that is consistently observed in Greenland, indicated by measurements of delta18O in ice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the New Jersey Coastal Plain, a silty to clayey sedimentary unit (the Marlboro Formation) represents deposition during the Paleocene-Eocene thermal maximum (PETM). This interval is remarkably different from the glauconitic sands and silts of the underlying Paleocene Vincentown and overlying Eocene Manasquan Formation. We integrate new and published stable isotope, biostratigraphic, lithostratigraphic and ecostratigraphic records, constructing a detailed time frame for the PETM along a depth gradient at core sites Clayton, Wilson Lake, Ancora and Bass River (updip to downdip). The onset of the PETM, marked by the base of the carbon isotope excursion (CIE), is within the gradual transition from glauconitic silty sands to silty clay, and represented fully at the updip sites (Wilson Lake and Clayton). The CIE "core" interval is expanded at the updip sites, but truncated. The CIE "core" is complete at the Bass River and Ancora sites, where the early part of the recovery is present (most complete at Ancora). The extent to which the PETM is expressed in the sediments is highly variable between sites, with a significant unconformity at the base of the overlying lower Eocene sediments. Our regional correlation framework provides an improved age model, allowing better understanding of the progression of environmental changes during the PETM. High-resolution benthic foraminiferal data document the change from a sediment-starved shelf setting to a tropical, river-dominated mud-belt system during the PETM, probably due to intensification of the hydrologic cycle. The excellent preservation of foraminifera during the PETM and the lack of severe benthic extinction suggest there was no extreme ocean acidification in shelf settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sparse to moderately abundant foraminiferal assemblages from Oligocene and Lower Miocene sediments in the CRP-2/2A drillhole contain C.27 genera and 42 species of calcareous benthic foraminifera. No planktic or agglutinated taxa were observed. On the basis of their faunal characteristics, four Foraminiferal Units are defined in drillhole succession: Foraminiferal Unit I (26.91-193.95 mbsf), mostly sparse assemblages with Elphidium magellanicum and Cribroelphidium sp.; Foraminiferal Unit II (193.95-342.42 mbsf), mostly moderately abundant assemblages with Cassidulinoides aequilatera and Eponides bradyi; Foraminiferal Unit III (342.42-486.19 mbsf), moderately abundant to sparse assemblages characterised by Cassidulinoides chapmani and Stainforthia sp.; and Foraminiferal Unit IV, Improverished (486.19-624.15, total depth, mbsf), with mostly barren residues, but with large Milioliidae recorded in situ at various horizons in the drill core. Foraminiferal Units I-IV lack taxa allowing correlation to standard zonal schemes. Inspection of faunal records from CIROS-1 and DSDP 270 indicates that, although the faunas show an overall similarity, CRP-2/2A Foraminiferal Units I-IV are not identifiable at these sites. The units are therefore most likely to reflect local environmental changes, and probably will prove useful for local correlation, but their lateral extent is undetermined. All four assemblages apparently represent various glacially-influenced shelf environments, and appear to reflect a long term deepening trend from Units IV to II, from perhaps inner to mid or outer-shelf depths, followed by a return to shallower, inner shelf, conditios for Unit I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Leg 198, the Cretaceous/Paleocene (K/P) boundary was recovered in a remarkable set of cores in nine separate holes at Sites 1209, 1210, 1211, and 1212 on the Southern High of Shatsky Rise. The boundary succession includes an uppermost Maastrichtian white to very pale orange, slightly indurated nannofossil ooze overlain by lowermost Paleocene grayish orange foraminiferal ooze. The boundary between the uppermost Maastrichtian and the lowermost Paleocene is clearly bioturbated. The contact surface is irregular, and pale orange burrows extend 10 cm into the white Maastrichtian ooze. Preliminary investigations conducted on board revealed that the deepest sections of these burrows yielded highly abundant, minute planktonic foraminiferal assemblages dominated by Guembelitria with rare Hedbergella holmdelensis and Hedbergella monmouthensis, possibly attributable to the lowermost Paleocene Zone P0. The substantial thickness of the uppermost Maastrichtian Micula prinsii (CC26) nannofossil Zone and the lowermost Danian Parvularugoglobigerina eugubina (Palpha) foraminiferal Zone suggested that the K/P boundary was rather expanded compared to the majority of deep-sea sites (see Bralower, Premoli Silva, Malone, et al., 2002, doi:10.2973/odp.proc.ir.198.2002). This data report concerns the planktonic foraminiferal biostratigraphy across the K/P boundary in Hole 1209C, the shallowest site (2387 m water depth), and in Hole 1211C, the deepest site (2907 m water depth), where the foraminiferal record across the boundary appeared to be best preserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential dissolution affects the isotopic composition of different species of planktonic foraminifera in different ways. In the two species studied here in cores from Ontong Java Plateau, the less resistant species, Globigerinoides sacculifer, is more readily affected at a shallower depth than the more resistant species, Pulleniatina obliquiloculata (2.9 versus 3.4 km), but shows a smaller and less predictable response to partial dissolution (0.2 to 0.3 per mil versus 0.6 to 0.7 per mil). Comparison of isotopic values from the last glacial period with those from the late Holocene indicates that the apparent dissolution effect is considerably reduced during the last glacial, presumably due to reduced dissolution intensity during glacial time. A change in the level of the lysocline of about 400 m is suggested. In the published isotope records from Pacific cores V28-238 and V28-239, the dissolution-generated difference in delta18O (noted previously by Shackleton and Opdyke [1976]) is seen to describe a mid-Brunhes dissolution maximum, between 300 and 500 thousand years ago. This mid-Brunhes dissolution excursion is well known from the Pacific and the Indian Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program Hole 803D (Leg 130) from the western tropical Pacific (Ontong Java Plateau) and Hole 628A (Leg 101) from the western subtropical North Atlantic (Little Bahama Bank) contain rich assemblages of planktonic foraminifers. The uppermost Eocene-basal Miocene section of Hole 803D is apparently complete, whereas the Oligocene section of Hole 628A contains three unconformities based on planktonic foraminiferal evidence. Anomalous ranges are recorded for Chiloguembelina cubensis and Globigerinoides primordius. C. cubensis is found to range throughout the upper Oligocene of both sites, and G. primordius first occurs near the base of upper Oligocene Zone P22 in Hole 628A. Paleomagnetic stratigraphy provides constraints on the last occurrence (LO) of Subbotina angiporoides, the first occurrence (FO) of Globigerina angulisuturalis, the FO of Globigerinoides primordius, the FO of Paragloborotalia pseudokugleri, and the LO of Chiloguembelina cubensis. In general, taxon ranges, total diversity, and the composition of the planktonic foraminiferal assemblages from Holes 628A and 803D are similar. Differences in the composition of planktonic foraminiferal assemblages between the two sites are interpreted to be primarily the result of enhanced dissolution at Site 803 (e.g., paucity of Globigerina angulisuturalis and absence of G. ciperoensis). However, the greater abundances of Subbotina angiporoides in subtropical Hole 628A and Paragloborotalia opima in tropical Hole 803D are probably related to oceanographic differences between the two low-latitude sites. Comparison between the low and southern high latitudes illustrates some similarities in the composition of Oligocene planktonic foraminiferal assemblages as well as some important differences. Species such as Pseudohastigerina spp., Turborotalia increbescens, "Turborotalia" ampliapertura, Paragloborotalia opima, P. pseudokugleri, P. semivera/mayeri, Globigerinella obesa, Globigerina angulisuturalis, G. gortanii, G. ouachitaensis, G. sellii, G. tapuriensis, G. tripartita, G. pseudovenezuelana, Subbotina? eocaena and S.? yeguaensis are absent or have rare occurrences in the subantarctic Oligocene assemblages. Biogeographic gradients, although not as pronounced as during the late Neogene, were nonetheless significant during the Oligocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen- and carbon-isotope compositions of planktic and benthic foraminifera and calcareous nannofossils from Middle Oligocene-Early Miocene Equatorial Atlantic sediments (DSDP Site 354) indicate two important paleoceanographic changes, in the Late Oligocene (foraminiferal Zone P.21) and in the Early Miocene (foraminiferal Zone N.5). The first change, reflected by a delta18O increase of 1.45? in Globigerina venezuelana, affected only intermediate pelagic and not surface, deep or bottom waters. The second change affected surface and intermediate waters, whereas deep and bottom waters showed only minor fluctuations. In the case of the former the isotope effect of the moderate ice accumulation on the Antarctic continent is amplified in the Equatorial Atlantic by changes in the circulation pattern. The latter paleoceanographic change, reflected by a significant increase in 18O in both planktic and benthic forms (about 1.0? and 0.5?, respectively), may have been caused by ice volume increase and temperature decrease. Both oxygen- and carbon-isotope compositions indicate a marked depth-habitat stratification for planktic foraminifera and calcareous nannofossils. Three different dwelling groups are recognized: shallow Globigerinoides, Globoquadrina dehiscens, Globorotalia mayeri and nannofossils; intermediate Globigerina venezuelana; and deep Catapsydrax dissimilis. The comparison of foraminifera and calcareous nannofossils suggests that the isotopic compositions of nannofossils are generally controlled by the same parameters which control the isotopic composition of shallow-dwelling foraminifera, but the former are more enriched in 18O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We document the waxing and waning of a "proto-warm pool" in the western equatorial Pacific (WEP) based on a study of multi-species planktic foraminiferal isotope ratios and census data spanning the 13.2-5.8 Ma interval at ODP Site 806. We hypothesize that the presence or absence of a proto-warm pool in the WEP, caused by the progressive tectonic constriction of the Indonesian Seaway and modulated by sea level fluctuations, created El Niño/La Niña-like alternations of hydrographic conditions across the equatorial Pacific during the late Miocene. This hypothesis is supported by the general antithetical relationship observed between carbonate productivity and preservation in the western and eastern equatorial Pacific, which we propose is caused by these alternating ocean-climate states. Warming of thermocline and surface waters, as well as a major change in planktic foraminferal assemblages record a two-step phase of proto-warm pool development ~11.6-10 Ma, which coincides with Miocene isotope events Mi5 and Mi6, and sea-level low stands. We suggest that these changes in the biota and structure of the upper water column in the WEP mark the initiation of a more modern equatorial current system, including the development of the Equatorial Undercurrent (EUC), as La Niña-like conditions became established across the tropical Pacific. This situation sustained carbonate and silica productivity in the eastern equatorial Pacific (EEP) at a time when carbonate preservation sharply declined in the Caribbean. Proto-warm pool weakening after ~10 Ma may have contributed to the nadir of a similar "carbonate crash" in the EEP. Cooling of the thermocline and increased abundances of thermocline taxa herald the decay of the proto-warm pool and higher productivity in the WEP, particularly ~ 9.0-8.8 Ma coincident with a major perturbation in tropical nannofossil assemblages. We suggest that this interval of increased productivity records El Niño-like conditions across the tropical Pacific and the initial phase of the widespread "biogenic bloom". Resurgence of a later proto-warm pool in the WEP ~6.5-6.1 Ma may have spurred renewed La Niña-like conditions, which contributed to a strong late phase of the "biogenic bloom" in the EEP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distinctive low-carbonate interval interrupts the continuous limestone-marl alternation of the deep-marine Gorrondatxe section at the early Lutetian (middle Eocene) C21r/C21n Chron transition. The interval is characterized by increased abundance of turbidites and kaolinite, a 3 per mil decline in the bulk d13C record, a >1 per mil decline in benthic foraminiferal d13C followed by a gradual recovery, a distinct deterioration in foraminiferal preservation, high proportions of warm-water planktic foraminifera and opportunistic benthic foraminifera, and reduced trace fossil and benthic foraminiferal diversity, thus recording a significant environmental perturbation. The onset of the perturbation correlates with the C21r-H6 event recently defined in the Atlantic and Pacific oceans, which caused a 2°C warming of the seafloor and increased carbonate dissolution. The perturbation was likely caused by the input of 13C-depleted carbon into the ocean-atmosphere system, thus presenting many of the hallmarks of Paleogene hyperthermal deposits. However, from the available data it is not possible to conclusively state that the event was associated with extreme global warming. Based on our analysis, the perturbation lasted 226 kyr, from 47.44 to 47.214 Ma, and although this duration suggests that the triggering mechanism may have been similar to that of the Paleocene-Eocene Thermal Maximum (PETM), the magnitude of the carbon input and the subsequent environmental perturbation during the early Lutetian event were not as severe as in the PETM.