893 resultados para Larger foraminifera


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages of distinctive taxonomic composition occur at the top of benthic fossil-free black shales which correspond to the anoxic event at the Cenomanian/Turonian boundary in the North Atlantic abyssal DSDP/ODP sites 386, 398, 603 and 641. These assemblages consist of minute, thin-walled agglutinated foraminifera with low specific diversity of 2 to 4 species, variable abundance and dominance of few taxa (Haplophragmoides, Rhizammina and Glomospira). The species are inferred to be opportunistic, able to survive in low-oxygen environments and to be pioneers recolonizing the seafloor after cessation of bottom-water anoxia. Most species are characterized by test morphologies with high surface/volume ratios and single-layered wall structures, with loosely agglutinated grains, and small amounts of organic cement for agglutination. These features are best observed in material from ODP Hole 641A which has exceptional foraminiferai preservation because of its shallow burial depth. The successive appearance of benthic foraminifera after the anoxic event is probably controlled by the continuous reoccurrence of more oxygenated bottom- and interstitial-water conditions. With the final development of oxic bottom-water conditions in the Turonian, a rapid radiation of deep-water agglutinated foraminifera occurred in the North Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution stratigraphy based on oxygen isotope ratios of the planktonic foraminifers Neogloboquadrina dutertrei (d'Orbigny), Globigeriniodes ruber (d'Orbigny), and Globigerina bulloides (d'Orbigny), magnetic susceptibility, and calcium carbonate content covers the sedimentary record of ODP Hole 728A drilled on the Oman Margin from approximately 10 k.y. to 525 k.y., comprising isotopic stages 1-13. Below stage 13 isotopic stage boundaries cannot be defined with certainty in our data. Sediment accumulation rates were calculated from the isotopic record of N. dutertrei by matching it with the age model SPECMAP curve. During the glacial periods sediment accumulation rates were higher than during the interglacial periods, reflecting increased input from the shelf during low-stands of sea level and increased eolian input. Periodograms for the past 524 k.y. on oxygen isotope records of N. dutertrei, G. ruber, and G. bulloides, on calcium carbonate content, magnetic susceptibility, and on a foraminiferal fragmentation record show powers matching the Milankovitch periodicities. High powers are concentrated around 103 k.y. In the spectra of oxygen isotope ratios of N. dutertrei, magnetic susceptibility, and foraminiferal fragmentation these are significant at the 80% confidence level with respect to a first order autoregressive model. Power concentrations near 43 k.y., matching obliquity, are present but subdued in all spectra. Power concentrations near 23 k.y., matching precession, are significant in the spectra of the oxygen isotope record of N. dutertrei, magnetic susceptibility, and calcium carbonate content record. Fragmentation of planktonic foraminifers increased during the interglacial periods. This is attributed to dissolution of the tests in an expanded oxygen minimum zone (OMZ), where undersaturation of calcium carbonate is caused by enhanced production in the euphotic zone, which would suggest stronger monsoonal induced upwelling during interglacial periods. Extension of the OMZ could also be increased by outflow of low oxygen marginal basin bottom water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indicators of surface-water productivity and bottom-water oxygenation have been studied for the age interval from the latest Pleistocene to the Holocene at three holes (679D, 680B, and 68IB) located in the center and at the edges of an upwelling cell at approximately 11°S on the Peruvian continental margin. Upwelling activity was maximal at this latitude during d18O Stages 1 (lower part), 3, the upper part of 5, the lower part of 6, and 7, as documented by high diatom abundance. During these time intervals, the bottom water was poorly oxygenated, as documented by low diversity benthic foraminiferal assemblages that are dominated by B. seminuda s.l. Both surface- and bottom-water-circulation patterns appear to have changed rapidly over short time intervals. Due to changes in surface circulation, the intensity of upwelling decreased, thereby decreasing the concentration of nutrients, and reducing the supply of organic matter to the bottom. Radiolarians became more abundant in the surface waters, and the bottom-water environment was less depleted in oxygen, allowing for the establishment of more diverse benthic foraminiferal assemblages. Surface-water productivity was probably minimal during the early part of d18O Stages 5 and 9, as indicated by the increased abundance of planktonic foraminifers and pteropods and their subsequent preservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary Mg/Ca ratio of foraminiferal shells is a potentially valuable paleoproxy for sea surface temperature (SST) reconstructions. However, the reliable extraction of this ratio from sedimentary calcite assumes that we can overcome artifacts related to foraminiferal ecology and partial dissolution, as well as contamination by secondary calcite and clay. The standard batch method for Mg/Ca analysis involves cracking, sonicating, and rinsing the tests to remove clay, followed by chemical cleaning, and finally acid-digestion and single-point measurement. This laborious procedure often results in substantial loss of sample (typically 30-60%). We find that even the earliest steps of this procedure can fractionate Mg from Ca, thus biasing the result toward a more variable and often anomalously low Mg/Ca ratio. Moreover, the more rigorous the cleaning, the more calcite is lost, and the more likely it becomes that any residual clay that has not been removed by physical cleaning will increase the ratio. These potentially significant sources of error can be overcome with a flow-through (FT) sequential leaching method that makes time- and labor-intensive pretreatments unnecessary. When combined with time-resolved analysis (FT-TRA) flow-through, performed with a gradually increasing and highly regulated acid strength, produces continuous records of Mg, Sr, Al, and Ca concentrations in the leachate sorted by dissolution susceptibility of the reacting material. Flow-through separates secondary calcite from less susceptible biogenic calcite and clay, and further resolves the biogenic component into primary and more resistant fractions. FT-TRA reliably separates secondary calcite (which is not representative of original life habitats) from the more resistant biogenic calcite (the desired signal) and clay (a contaminant of high Mg/Ca, which also contains Al), and further resolves the biogenic component into primary and more resistant fractions that may reflect habitat or other changes during ontogeny. We find that the most susceptible fraction of biogenic calcite in surface dwelling foraminifera gives the most accurate value for SST and therefore best represents primary calcite. Sequential dissolution curves can be used to correct the primary Mg/Ca ratio for clay, if necessary. However, the temporal separation of calcite from clay in FT-TRA is so complete that this correction is typically <=2%, even in clay-rich sediments. Unlike hands-on batch methods, that are difficult to reproduce exactly, flow-through lends itself to automation, providing precise replication of treatment for every sample. Our automated flow-through system can process 22 samples, two system blanks, and 48 mixed standards in <12 hours of unattended operation. FT-TRA thus represents a faster, cheaper, and better way to determine Mg/Ca ratios in foraminiferal calcite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climate during the Cenozoic era changed in several steps from ice-free poles and warm conditions to ice-covered poles and cold conditions. Since the 1950s, a body of information on ice volume and temperature changes has been built up predominantly on the basis of measurements of the oxygen isotopic composition of shells of benthic foraminifera collected from marine sediment cores. The statistical methodology of time series analysis has also evolved, allowing more information to be extracted from these records. Here we provide a comprehensive view of Cenozoic climate evolution by means of a coherent and systematic application of time series analytical tools to each record from a compilation spanning the interval from 4 to 61 Myr ago. We quantitatively describe several prominent features of the oxygen isotope record, taking into account the various sources of uncertainty (including measurement, proxy noise, and dating errors). The estimated transition times and amplitudes allow us to assess causal climatological-tectonic influences on the following known features of the Cenozoic oxygen isotopic record: Paleocene-Eocene Thermal Maximum, Eocene-Oligocene Transition, Oligocene-Miocene Boundary, and the Middle Miocene Climate Optimum. We further describe and causally interpret the following features: Paleocene-Eocene warming trend, the two-step, long-term Eocene cooling, and the changes within the most recent interval (Miocene-Pliocene). We review the scope and methods of constructing Cenozoic stacks of benthic oxygen isotope records and present two new latitudinal stacks, which capture besides global ice volume also bottom water temperatures at low (less than 30°) and high latitudes. This review concludes with an identification of future directions for data collection, statistical method development, and climate modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal changes in benthic foraminiferal assemblages were quantitatively examined (> 63 µm fraction) in four southwest Pacific deep-sea Neogene sequences in a depth transect between approximately 1300 and 3200 m to assist in evaluating paleoeeanographic history. The most conspicuous changes in benthic foraminiferal assemblages occurred in association with paleoclimatic changes defined at least in part by oxygen isotopic changes. The largest, centered at ~15 Ma (early Middle Miocene), is represented by an increase in the relative frequencies of Epistominella exigua, which underwent a major upward depth migration at that time. This was contemporaneous with the well-known positive oxygen isotopic shift in the early Middle Miocene. In Sites 588 and 590, most of the increase in relative abundances of E. exigua occurred during the middle to later part of the ~80 shift, following major growth of the east Antarctic ice sheet. Later assemblage changes occurred at 8.5 and 6.5 Ma. These associations indicate that the benthic foraminiferal assemblages in this depth transect largely adjusted to changes in deep waters related to Antarctic cryospheric evolution. In general, the Neogene benthic foraminiferal assemblages in this region underwent little change during the last 23 million years. This faunal conservatism suggests that deep-sea environments underwent relatively little change in the southwest Pacific during much of the Neogene. Although paleoceanographic changes did occur, partly in response to highlatitude cryospheric evolution, these were not of sufficient magnitude to create major deep-sea faunal changes in this part of the ocean. The benthic foraminiferal assemblages are dominated by individuals smaller than 150 µm. Most taxonomic turnover occurred in the larger (> 150 µm) size fractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trigger weight (TWC) and piston (PC) cores obtained from surveys of the three sites drilled during Ocean Drilling Program (ODP) Leg 105 were studied in detail for benthic foraminiferal assemblages, total carbonate (all sites), planktonic foraminiferal abundances (Sites 645 and 647), and stable isotopes (Sites 646 and 647). These high-resolution data provide the link between modern environmental conditions represented by the sediment in the TWC and the uppermost cores of the ODP holes. This link provides essential control data for interpretating late Pleistocene paleoceanographic records from these core holes. At Site 645 in Baffin Bay, local correlation is difficult because the area is dominated by ice-rafted deposits and by debris flows and/or turbidite sedimentation. At the two Labrador Sea sites (646 and 647), the survey cores and uppermost ODP cores can be correlated. High-resolution data from the site survey cores also provide biostratigraphic data that refine the interpretations compiled from core-catcher samples at each ODP site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miocene deep-sea sediments from ODP Site 744 (Kerguelen Plateau, southern Indian Ocean) contain abundant and diverse planktonic foraminiferal assemblages. Their analysis led to the identification of the interval between 17.0 and 14.2 Ma as a time of mid-Miocene warmth, which is investigated here in detail. This investigation includes reconstruction of trends in foraminiferal faunal composition and diversity through time, as well as in morphology and coiling direction within Globorotalia praescitula and Globorotalia zealandica plexi. These two large-globorotaliid plexi constitute the most characteristic component of the mid-Miocene foraminiferal faunas at ODP Site 744. Selected benthic (Cibicidoides sp.) and planktonic foraminifera were also analyzed for delta18O and delta13C ratios. Distinctive planktonic assemblages were the basis for identification of three foraminiferal biofacies between 17.0 and 14.2 Ma. The most prominent faunal changes took place between Biofacies 2 and 3 (15.5-15.0 Ma). Six of 11 macroperforate planktonic foraminifera from the >150-µm size fraction occur principally within Biofacies 3. Three other taxa are present throughout the interval analyzed. Moreover, both aforementioned globorotaliid plexi exhibit an increase in morphological diversity between Biofacies 2 and 3. Within the same interval, the G. zealandica plexus shows a switch from random coiling (50% sinistral) to clearly sinistral-dominated coiling. The faunal changes recognized are interpreted as the result of foraminiferal immigrations (increase in faunal diversity) and evolutionary trends (increase in morphological variability and change in coiling mode among the globorotaliid plexi). The stable isotopic results allow paleoenvironmental interpretation of these faunal changes. According to the delta18O values, no significant change in sea-surface temperature occurred between 17.0 and 14.2 Ma. However, the same data suggest an increase in ecological distance between various niches, which is expressed by a rising delta18O gradient recorded between various planktonic taxa upward within the section. This trend suggests niche-space availability as a likely factor responsible for the faunal changes recognized. Changes in the shape and depth of the thermocline, as well as in seasonality and eutrophication are considered as possible causes. Among these an increase in seasonality appears to have been responsible for the increase in species and morphological diversities between 15.5 and 15.0 Ma. The proposed scenario suggests that changes in seasonality may be an important factor driving faunal migrations and evolution. Variable seasonality may also affect the oxygen isotopic record of planktonic foraminiferal taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The causes for discordant radiocarbon results on multiple species of planktonic foraminifera from high-sedimentation-rate marine sediments are investigated. We have documented two causes for these anomalous results. One is the addition of secondary radiocarbon for which we have, to date, only one firm example. It involves an opal-rich sediment. The other is the incorporation of reworked material. Again, we have, to date, only one firm example. It involves a rapidly deposited ocean margin sediment. However, we have three other examples where reworking is the most likely explanation. On the basis of this study it is our conclusion that, where precise radiocarbon dating of high-deposition-rate marine sediment is required, a prerequisite is to demonstrate that concordant ages can be obtained on pairs of fragile and robust planktic shells. For sediment rich in opal, it is advisable to check for secondary calcite by comparing ages obtained on acid-leached samples with those on unleached samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major change in Cenozoic deep-sea benthic foraminifera occurred in the Atlantic, Indian, and Pacific oceans near the Paleocene/Eocene boundary. Benthic foraminiferal abundance changes began at about 61.5 Ma at Pacific Deep Sea Drilling Project (DSDP) Site 577. A major extinction event followed at 58-57 Ma (between Zones P6a and P6b), and a series of first appearances continued until circa 55.5 Ma (Zone P6c). These faunal changes occurred during a 6°C warming of Pacific bottom water and may indicate that the primary cause was changing temperature. Other potential causes of the faunal turnover include global changes in surface ocean productivity and changing bottom water source regions. Comparison of benthic and planktonic delta13C records requires no change in the ratio of oceanic phosphorous to carbon during the late Paleocene to early Eocene, which weakens the case for (but does not disprove) a change in surface ocean productivity at this time. Interbasinal comparisons of benthic foraminiferal delta13C records document that water with high delta13C values filled the Cape Basin during the late Paleocene and possibly the early Eocene (circa 61-57 Ma), but apparently did not extend into the western basins of the Atlantic. This pattern suggests a supply of Antarctic source water for the Cape Basin and possible tectonic isolation of the western Atlantic basins during at least part of the late Paleocene. Carbon isotope comparisons show that bottom water supply to the Cape Basin was reduced in the early Eocene. Eolian grain size data suggest that a decrease in zonal wind intensity occurred at the end of the Paleocene. These late Paleocene climatic changes (bottom water warming and decreased wind intensity) correspond with evidence for an important global tectonic reorganization and extensive subaerial volcanism, which may have contributed to climatic warming through increased supply of CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment trap samples from OMEX 2 (49°N, 13°W) provide a continuous record of the seasonal succession of planktonic foraminifera in the midlatitude North Atlantic and reveal a complex relationship between periods of production and specific hydrographic conditions. Neogloboquadrina pachyderma dextral coiling (d.), Globigerina bulloides, and Globorotalia inflata are found in great numbers during both the spring and summer seasons, whereas Globigerina quinqueloba, Globorotalia hirsuta, Globorotalia scitula, and Globigerinita glutinata are associated predominantly with the increase in productivity during the spring bloom. Globigerinella aequilateralis, Orbulina universa, and Globigerinoides sacculifer are restricted to late summer conditions following the establishment of a warm, well-stratified surface ocean. An annually integrated fauna from the sediment trap, comprising ~13,000 individuals, is used to evaluate the accuracy of five faunal-based statistical methods of paleotemperature estimation. All of the temperature reconstruction techniques produce estimates of ~16°C and ~11°C for summer and winter surface temperature, respectively, which are in excellent agreement with regional hydrographic data and suggest that the sediment trap assemblage is well represented in the core top faunas. Analysis of the key species that dominate the OMEX 2 sediment trap fauna, G. bulloides, G. inflata, and N. pachyderma d., based on d18O derived temperatures from North Atlantic core top samples, suggests that seasonal variations in planktonic foraminiferal production are nonuniform across the midlatitudes and that this is likely to complicate reconstructing past seasonal hydrographic dynamics using these taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small biserial foraminifera were abundant in the early Miocene (ca. 18.9-17.2 Ma) in the eastern Atlantic and western Indian Oceans, but absent in the western equatorial Atlantic Ocean, Weddell Sea, eastern Indian Ocean, and equatorial Pacific Ocean. They have been assigned to the benthic genus Bolivina, but their high abundances in sediments without evidence for dysoxia could not be explained. Apertural morphology, accumulation rates, and isotopic composition show that they were planktic (genus Streptochilus). Living Streptochilus are common in productive waters with intermittent upwelling. The widespread early Miocene high Streptochilus abundances may reflect vigorous but intermittent upwelling, inducing high phytoplankton growth rates. However, export production (estimated from benthic foraminiferal accumulation rates) was low, possibly due to high regeneration rates in a deep thermocline. The upwelled waters may have been an analog to Subantarctic Mode Waters, carrying nutrients into the eastern Atlantic and western Indian Oceans as the result of the initiation of a deep-reaching Antarctic Circumpolar Current, active Agulhas Leakage, and vigorous vertical mixing in the Southern Oceans.