379 resultados para Kaolin and clay
Resumo:
Calcium carbonate and organic carbon concentrations are from measurements made on board the JOIDES Resolution during Leg 117 (Prell, Niitsuma, et al., 1989, doi:10.2973/odp.proc.ir.117.1989). Values are for samples immdiately adjacent to fabric samples, or for Site 723 within 25 cm of the fabric sample interval. Intervals for which carbon analyses were not performed are represented by values in parenthesis which are from the nearest interval of similar lithology. Organic carbon analyses were not performed for samples below 402 mbsf at Site 731. Analyses performed on similar sediments at Sites 722 and 731 indicate the organic carbon concentration is probably <0.20%.
Resumo:
Fine-grained clay subfractions (SFs) with particle size of <0.1, 0.1-0.2, 0.2-0.3, 0.3-0.6, 0.6-2.0, and 2-5 µm separated from claystone of Upper Precambrian Pumanskaya and Poropelonskaya formations on the Srednii Peninsula were studied by transmission electron microscopy, X-ray diffraction, and Rb-Sr methods. All subfractions consist of low-temperature illite and chlorite, and contribution of chlorite decreases with diminishing particle size. The crystallinity index and I002/I001 ratio increase from coarse- to fine-grained SFs. Leaching by ammonium acetate solution and Rb-Sr systematics in combination with mineralogical and morphological data indicate that illite in Upper Proterozoic claystone from the Srednii Peninsula formed during three time intervals: 810-830, 610-620, and about 570 Ma ago. The first generation of this mineral with low Rb/Sr ratio dominates in coarse-grained SFs while the second and third generations with a high Rb/Sr ratio prevail in fine-grained SFs. All of three generations are known in Poropelon claystone, whereas Puman claystone contains only illite of the first and second generations. Geological processes responsible for multistage illite evolution in claystones are discussed.
Resumo:
Late Quaternary sediments recovered in a core from the area of the Zaire Fan, Central Africa, were analyzed for clay mineral composition in order to reconstruct fluctuations in the sediment input and freshwater discharge of the Zaire River. Clay mineral assemblages are dominated by kaolinite and smectite, which both originate mainly from the Zaire River and contain only minor contributions of eolian dust. Smectite crystallinity and chemical character of illites (Fe, Mg- or Al-rich) are used to track sediment input from the Zaire River and assess fluctuations in the freshwater discharge. Both parameters record a high-latitude forcing of river runoff at 100 ka periodicities reflecting glacial aridity and increased runoff during interglacials 1, 5 and 7. This signal is also observed in kaolinite/smectite ratios which represent the extension and intensity of the freshwater plume of the Zaire River. Clay mineral proxies reveal that river discharge and associated sediment input fluctuated in tune with precessional cycles of African monsoon intensity. Increased eolian input of kaolinite-rich dust with intensified northeast trades during glacials flattens the precessional signal in kaolinite/smectite ratios.