594 resultados para Benthic Microalgae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen and carbon isotope ratios in Eocene and Oligocene planktonic and benthic foraminifera have been investigated from Atlantic, Indian, and Pacific Ocean locations. The major changes in Eocene-Oligocene benthic foraminiferal oxygen isotopes were enrichment of up to 1 per mil in 18O associated with the middle/late Eocene boundary and the Eocene/Oligocene boundary at locations which range from 1- to 4-km paleodepth. Although the synchronous Eocene-Oligocene 18O enrichment began in the latest Eocene, most of the change occurred in the earliest Oligocene. The earliest Oligocene enrichment in 18O is always larger in benthic foraminifera than in surface-dwelling planktonic foraminifera, a condition that indicates a combination of deep-water cooling and increased ice volume. Planktonic foraminiferal d18O does not increase across the middle/late Eocene boundary at our one site with the most complete record (Deep Sea Drilling Project Site 363, Walvis Ridge). This pattern suggests that benthic foraminiferal d18O increased 40 m.y. ago because of increased density of deep waters, probably as a result of cooling, although glaciation cannot be ruled out without more data. Stable isotope data are averaged for late Eocene and earliest Oligocene time intervals to evaluate paleoceanographic change. Average d18O of benthic foraminifera increased by 0.64 per mil from the late Eocene to the early Oligocene d18O maximum, whereas the average increase for planktonic foraminifera was 0.52 per mil. This similarity suggests that the Eocene/Oligocene boundary d18O increase was caused primarily by increased continental glaciation, coupled with deep sea cooling by as much as 2°C at some sites. Average d18O of surface-dwelling planktonic foraminifera from 14 upper Eocene and 17 lower Oligocene locations, when plotted versus paleo-latitude, reveals no change in the latitudinal d18O gradient. The Oligocene data are offset by ~0.45 per mil, also believed to reflect increased continental glaciation. At present, there are too few deep sea sequences from high latitude locations to resolve an increase in the oceanic temperature gradient from Eocene to Oligocene time using oxygen isotopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of lithologic, foraminiferal, seismostratigraphic, and downhole logging characteristics, we identified seven distinctive erosional unconformities at the contacts of the principal depositional sequences at Site 612 on the New Jersey Continental Slope (water depth 1404 m). These unconformities are present at the Campanian/Maestrichtian, lower Eocene/middle Eocene, middle Eocene/upper Eocene, upper Eocene/lower Oligocene, lower Oligocene/upper Miocene, Tortonian/Messinian, and upper Pliocene/upper Pleistocene contacts. The presence of coarse sand or redeposited intraclasts above six of the unconformities suggests downslope transport from the adjacent shelf by means of sediment gravity flows, which contributed in part to the erosion. Changes in the benthic foraminiferal assemblages across all but the Campanian/Maestrichtian contact indicate that significant changes in the seafloor environment, such as temperature and dissolved oxygen content, took place during the hiatuses. Comparison with modern analogous assemblages and application of a paleoslope model where possible, indicate that deposition took place in bathyal depths throughout the Late Cretaceous and Cenozoic at Site 612. An analysis of two-dimensional geometry and seismic fades changes of depositional sequences along U.S.G.S. multichannel seismic Line 25 suggests that Site 612 was an outer continental shelf location from the Campanian until the middle Eocene, when the shelf edge retreated 130 km landward, and Site 612 became a continental slope site. Following this, a prograding prism of terrigenous debris moved the shelf edge to near its present position by the end of the Miocene. Each unconformity identified can be traced widely on seismic reflection profiles and most have been identified from wells and outcrops on the coastal plain and other offshore basins of the U.S. Atlantic margin. Furthermore, their stratigraphic positions and equivalence to similar unconformities on the Goban Spur, in West Africa, New Zealand, Australia, and the Western Interior of the U.S. suggest that most contacts are correlative with the global unconformities and sea-level falls of the Vail depositional model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen and carbon isotope ratio measurements are presented for Globigerinoides ruber and for benthic species (mainly Uvigerina spp.) in the Pleistocene and uppermost Pliocene section of ODP Hole 677A in the Panama Basin. This provides the best available continuous Pleistocene stable isotope records from any location, fully justifying the recoring of DSDP Site 504. Oxygen isotope stage 22 (age about 0.85 Ma) was of similar magnitude to the most extensive glacials of the Brunhes and constitutes a logical base for the middle Pleistocene. Oxygen isotope stages as defined by Ruddiman et al. (1986, doi:10.1016/0012-821X(86)90024-5) and by Raymo et al. (1989, doi:10.1029/PA004i004p00413) back to stage 104 are recognized. Although the internationally agreed base of the Quaternary at or near stage 62 (about 1.6 Ma) is not marked by a major isotopic event, it does approximate the base of a regime characterized by highly regular 41,000-yr climate cycles. The records at Site 677 are ideal for time-series analyses and will permit a new attempt to develop a chronology for the early Pleistocene based on tuning to the orbital frequencies. The carbon isotope records also appear to contain considerable variance at orbital frequencies throughout the sequence analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the vertical water mass structure of the Vema Channel during the Pliocene have been inferred from benthic foraminiferal assemblages and stable isotopic analyses from three sites of DSDP Leg 72 (South Atlantic). Faunal and isotopic results from Sites 516A and 518 suggest that a major change occurred in deep-water circulation patterns in the late Pliocene near 3.2 Ma. Benthic oxygen isotopic records from Sites 516A and 518 show a characteristic increase in d18O values near 3.2 Ma. This has been documented in numerous Pliocene isotopic records. The magnitude of the oxygen isotopic enrichment near 3.2 Ma appears to increase with water depth from an average enrichment of 0.34 per mil in Site 516A (1313 m) to an average enrichment of 0.58 per mil in Site 518 (3944 m). We suggest that this enrichment resulted partly from a change in deep-water circulation patterns which included a decrease in bottom-water temperatures. Planktonic d18O values near 3.2 Ma show no evidence of an enrichment which would be indicative of an increase in global ice volume. On the contrary, d18O values in Sites 517 and 518 become more depleted near 3.2 Ma, indicating a surface-water warming perhaps due to a change in the strength and/or position of the Brazil Current. An increase in the relative abundance of the benthic foraminifer Nuttalides umbonifera, which is associated with Antarctic Bottom Water (AABW) in the modern ocean, coincides with the benthic 18O enrichment in Site 518. At 3.2 Ma, oxygen and carbon isotopic gradients between Sites 518 (3944 m) and 516A (1313 m) show a marked increase such that Site 518 becomes enriched in 18O and depleted in 13C relative to Site 516A. This enrichment in d18O is interpreted as partly representing a temperature decrease at Site 518; the depletion in d13C indicates a corrosive water mass which is high in metabolic CO2. We suggest that benthic foraminiferal and stable isotopic changes in Site 518 resulted from a pulse-like increase in the formation of AABW near 3.2 Ma. The cause of this circulation event may have been linked to global cooling and/or the final closure of the Central American Seaway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stable-isotope stratigraphy at Site 846 (tropical Pacific, 3°06'S, 90°49'W, 3307 m water depth), based on the benthic foraminifers Cibicides wuellerstorfi and Uvigerina peregrina, yields a high-resolution record of deep-sea delta18O and delta13C over the past 1.8 Ma, with an average sampling interval of 3 k.y. Variance in the delta18O and delta13C records is concentrated in the well-known orbital periods of 100, 41, and 23 k.y. In the 100-k.y. band, both isotopic signals grow from relatively low amplitudes prior to 1.2 Ma, to high amplitudes in the late Quaternary since 0.7 Ma. The amplitude of delta18O and especially of delta13C decreases in the 41-k.y. band as it grows in the 100-k.y. band, consistent with a transfer of energy into an orbitally-paced internal oscillation. A weak 30-k.y. rhythm, present in both delta18O and delta13C, may reflect nonlinear interaction between the 41-k.y. and 100-k.y. bands in the evolving climate system. In the 23-k.y. and 19-k.y. bands associated with orbital precession, delta18O and delta13C are not coherent with each other on long time scales, and do not evolve like the 100-k.y. and 41-k.y. bands. This suggests that the source of the growing 100-k.y. oscillation is not a nonlinear response to precession, in contrast to predictions of some climate models. Sedimentation rates at this site also vary with a strong 100-k.y. cycle. Unlike the isotope records, the amplitude of 100-k.y. variations in sedimentation rate is relatively constant over the past 1.8 Ma, ranging from about 15 to 70 m/m.y. Prior to 0.9 Ma, sedimentation rates co-vary with orbital eccentricity, rather than with global climate as reflected by delta18O or delta13C. A source of this 100-k.y. cycle of sedimentation rate in the absence of similar ice volume fluctuations may be precessional heating of equatorial land masses, which in an energy balance climate model drives variations of monsoonal climates with a 100-k.y. rhythm. For the interval younger than 0.9 Ma, high sedimentation rates in the 100-k.y. band are consistently associated with glacial stages. This change of pattern suggests that when the amplitude of glacial cycles become large enough, their global effects overpower a local monsoon-driven variation in sedimentation rate at Site 846.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen and carbon isotope measurements have been made in picked planktonic and benthonic foraminifers from the five sites drilled on Leg 74, covering the whole Cenozoic. For the Neogene, the coverage gives good information on the development of the vertical temperature structure of Atlantic deep water. For the Paleogene, vertical gradients were weak and it is possible to combine data from different sites to obtain a very detailed record of both the temperature and carbon isotope history of Atlantic deep waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pack ice around Svalbard was sampled during the expedition ARK XIX/1 of RV "Polarstern" (March-April 2003) in order to determine environmental conditions, species composition and abundances of sea-ice algae and heterotrophic protists during late winter. As compared to other seasons, species diversity of algae (total 40 taxa) was not low, but abundances (5,000-448,000 cells/l) were lower by one to two orders of magnitude. Layers of high algal abundances were observed both at the bottom and in the ice interior. Inorganic nutrient concentrations (NO2, NO3, PO4, Si(OH)4) within the ice were mostly higher than during other seasons, and enriched compared to seawater by enrichment indices of 1.6-24.6 (corrected for losses through the desalination process). Thus, the survival of algae in Arctic pack ice was not limited by nutrients at the beginning of the productive season. Based on less-detailed physical data, light was considered as the most probable factor controlling the onset of the spring ice-algal bloom in the lower part of the ice, while low temperatures and salinities inhibit algal growth in the upper part of the ice at the end of the winter. Incorporation of ice algae probably took place during the entire freezing period. Possible overwintering strategies during the dark period, such as facultative heterotrophy, energy reserves, and resting spores are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of microhabitat, organic matter flux, and metabolism on the stable oxygen and carbon isotope composition of live (Rose Bengal stained) and dead (empty tests) deep-sea benthic foraminifera from the Gulf of Lions (western Mediterranean Sea) have been studied. The total range of observed foraminiferal isotope values exceeds 1.0 per mil for d18O and 2.2 per mil for d13C demonstrating a wide range of coexisting disequilibria relative to d18O of equilibrium calcite (d18OEQ) and d13C of bottom water dissolved inorganic carbon (d13CDIC). The mean d18O values reveal strongest disequilibria for the studied epifaunal to shallow infaunal species (Cibicidoides pachydermus, Uvigerina mediterranea, Uvigerina peregrina) while values approach equilibrium in deep infaunal species (Globobulimina affinis, Globobulimina pseudospinescens). The mean d13C values decrease with increasing average living depths of the different species, thus reflecting a dominant microhabitat (pore water) signal. At the axis of the Lacaze-Duthier Canyon a minimum d13CDIC pore water gradient of approximately -2.1 per mil is assessed for the upper 6 cm of the surface sediment. Although live individuals of U. mediterranea were found in different depth intervals their mean d13C values are consistent with calcification at an average living depth around 1 cm. The deep infaunal occurrence of U. mediterranea specimens suggests association with macrofaunal burrows creating a microenvironment with geochemical characteristics similar to the topmost centimeter. This also explains the excellent agreement between stable isotope signals of live and dead individuals. The ontogenetic enrichment in both d18O and d13C values of U. mediterranea suggests a slow-down of metabolic rates during test growth similar to that previously observed in planktic foraminifera. Enhanced organic carbon fluxes and higher proportion of resuspended terrestrial organic material at the canyon axis are reflected by d13C values of U. mediterranea on average 0.58 per mil lower than those from the open slope. These results demonstrate the general applicability of the d13C signal of this species for the reconstruction of past organic matter fluxes in the Mediterranean Sea. Further studies on live specimens are needed for a more quantitative paleoceanographic approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent drilling on the Kerguelen Plateau (Ocean Drilling Program Leg 183) has provided a unique and exciting high latitude record of palaeoceanographic change during the Cenomanian-Turonian in the Southern Ocean. The benthic foraminiferal succession at Site 1138 records the evolution of the Kerguelen Plateau from a subaerially exposed platform in the Cenomanian to a bathyal, pelagic environment in the early Turonian, following a major transgressive pulse and increased thermal subsidence of the Kerguelen Plateau, which led to a sea-level rise of possibly several hundred metres. Diversified benthic foraminiferal assemblages indicate an upper bathyal, mesotrophic setting after the peak of the transgression. The assemblages exhibit strong similarities to temperate, shelf and slope assemblages in the Northern Hemisphere. This bimodal distribution reflects the existence of open oceanic gateways and a dynamic trans-hemispheric global circulation. Equatorial assemblages are characterized by a low-diversity, high carbon flux biofacies. Assemblages from Alaska demonstrate high organic productivity and low oxygen conditions and the prevalence of elevated temperatures on the flooded shelf of the North Slope. Our results show that the distribution of upper bathyal benthic foraminifera was strongly modulated by carbon flux and oxygenation fluctuations, and not by physical migration barriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New geochemical proxy data from Bermuda Rise piston cores reveal ocean and climate conditions in the northern Sargasso Sea during marine isotope stage 3. Using ?18O on the planktonic foraminifer Globigerinoides ruber, we can correlate explicitly with every stadial/interstadial change in Greenland ice between ~32 and 58 ka. These data suggest repetitive changes of ~4°C in the annual average sea surface temperature (SST), with maximum cooling comparable to or greater than SST during glacial maximum conditions. The extent of SST depression is about the same for typical stadial events and for Heinrich events 4 and 5, which we have identified on the Bermuda Rise by traces of ice rafting. Benthic foraminiferal d13C decreases during every stadial event, consistent with reduced production of the deepest component of North Atlantic Deep Water and shoaling of its interface with Antarctic Bottom Water. This interpretation is supported by benthic Cd/Ca data from the climate cycle associated with interstadial 8.