398 resultados para Arafura Shelf
Resumo:
Two hundred and seventy five mollusc species from the continental shelf off Southern Spanish Sahara (depth: 32-60 m) were identified. Their distribution pattern is strongly influenced by the nature of the bottom (firm substrate, shelter, stability of sediment) rather than other factors at that depth interval. This faunal assemblage shows great affinity to the Mediterranean and Lusitanian faunas, and comprises only few (22 %) exclusively Senegalese and species living south of Senegal.
Resumo:
Sediment sampling with box corer and gravity corer was conducted along a profile parallel to the Filchner/Rønne Ice Shelf, from 48° to 61°W. Twenty-two sampling locations were determined after evaluation of 12 and 3.5 kHz sub-bottom profiling records. The sediment retrievals show a wide diversity, varying from very well sorted pure sands in the SE of the profile to heavily glacially influenced, pebbly muds close to the foot of the Antarctic Peninsula. In the middle part of the profile mainly soft sediments of muddy to sandy muds were found which were partially influenced by glacially derived dropstones or accumulations of pebble-sized material. The striking changes of surface sediments (marine to glacial) observed along the profile led to an attempt to investigate the concurrence of marine and glacial depositional processes controlling the accumulation of these recent sediments.
Resumo:
Samples from sutface sediments of the shell, continental slope, and adjacent deep sea regions off West Africa between 27° N and 15° N were investigated with respect to grain size distribution of the total samples, sand contents of the acid insoluble residues, carbonate content of the total samples, and the separate grain size fractions, specific surfaces, colours and mineralogical composition of the clay fractions. The grain size distributions of the total samples of the sediments of the shelf and the continental slope off Spanish-Sahara are controlled mainly by biogenic components. The supply of terrigeneous material in this area is very low. At deeper parts of the continental slope and in the deep sea areas, the relative amounts of carbonate minerals in the sediments are considerably reduced. The prevailing sand contents of the upper slope changes into clay dominance. On the shelf of Mauritania - represented by profiles extending down to 200 m water depth - the grain size is also controlled mainly by biogenic carbonates. Nevertheless, the admixture of fossil silicate components is important, too. The southern parts of the area is investigated are located in a region influenced by sediments of the Senegal River, which especially control the contents of silt and clay. The silicate sands, predominately of quartz, are fossil and form a mixed sediment with younger deposits. The carbonate contents of the different grain size fractions are formed either by sedimentation of carbonate and silicate particles of the respective grain size or by autochtonous disintegration of coarser sediment particles, as shown by the occurence of Mg-rich calcite and especially aragonite in the clay sized fraction. In the northern parts of the area investigated, which have very minute terrigeneous supply, the latter mechanism is the dominant factor, controlling the carbonate contents of the fine grain sized fractions. In the vicinity of the mouth of the Senegal the carbonate contents are influenced by extremely high dilution with terrigencous silicates. Mg-rich calcite and aragonite are produced preferentially in shallow slope and shelf areas up to 500 m of water depth. The specific surfaces of the carbonate-free clay fractions indicate that the clay fractions of the shelfareas with little terrigenous supply consits of relatively coarser particles. Very fine particles are removed and transported towards the deep sea. Lateral differentiation of this kind was not observed in the area off Senegal. The high surface areas, characterizing the clay fractions of this region, are thought to be due to high montmorillonite contents as was found for deep seas sediments. The mineralogical composition of the clay fraction from the southern parts of the area is characterized by high kaolinite and montmorillonite contents, while in the northern illite is predominating. At least two types of montmorillionites are present: in areas influenced by the Senegal mostly one type was found, which could swell to 17; on the shelves and slopes of the other regions the montmorillonite-group is represented by a montmorillonite-mica-type mixed-layer mineral. A "glauconite", found in the sand fraction, which had very similar properties to those of the montmorillonite-mica mixed-layer, is believed to be the source of this mixed-layer-type mineral. Palygorskite is present in all samples out of range of the Senegal supply. It may be an indicator of eolian transported material. The occurence of rich palygorskit deposits in the arid hinterlands emphasizes the terrestrial origin.
Resumo:
Petrographic analysis of Quaternary terrigenous sand layers in eastern Mediterranean cores reveals distinct mineralogical differences between the Egyptian Shelf-Nile Cone region and the southern part of the Mediterranean Ridge. A compositionally and texturally immature suite in Ridge cores, mixed with a Nile-derived assemblage, identifies a fresh non-recycled mineral component derived from proximal igneous and metamorphic surface or near-surface exposures, probably in the south-central Ridge area rather than from distal African sources. The presence of such basement terrains would be consistent with a compressive thrust-belt origin for this part of the Mediterranean Ridge.
Resumo:
Distinct facies types, classified in radiocarbon-dated sediments from the shelf of the Lazarev Sea, East Antarctica, reveal a detailed history of processes that have controlled sedimentation during the deglaciation over the last 10,000 yr. The ice retreat on this part of the Antarctic shelf started 9500 yr BP, marked by the deposition of laminated sediments, deposited from a floating ice shelf. These laminites, which occur on top of diamictons laid down from a grounded ice sheet, are the basal sediments of the postglacial sequence. The intensity of the Antarctic Coastal Current (ACC), directed by shelf morphology, controlled sedimentation of the postglacial facies. A residual glaciomarine sediment with the fine fraction winnowed by strong currents developed from 9000-8000 yr BP in the western part of the investigation area and from 9000-5000 yr BP in the eastern part, closer to the prominent 'Fenno Deep' trough. Current velocities apparently decreased between 8000 and 2000 yr BP due to a deflection of the ACC by advancing ice tongues to the east of the investigation area during the 'Hypsithermal'. This led to a deposition of fine-grained sediments, and clay mineralogy suggests a continental source, possibly near the grounding line of the Nivl Ice Shelf, rather than a winnowing of sediments near the shelf break or advection from deeper water. Current velocities intensified after 2000 yr BP, removed fine material from these sediments and led to a relict sediment, consisting of coarse bryozoan and molluscan debris.
Resumo:
We present new Holocene century to millennial-scale proxies for the well-dated piston core MD99-2269 from Húnaflóadjúp on the North Iceland Shelf. The core is located in 365 mwd and lies close to the fluctuating boundary between Atlantic and Arctic/Polar waters. The proxies are: alkenone-based SST°C, and Mg/Ca SST°C estimates and stable d13C and d18O values on planktonic and benthic foraminifera. The data were converted to 60 yr equi-spaced time-series. Significant trends in the data were extracted using Singular Spectrum Analysis and these accounted for between 50% and 70% of the variance. A comparison between these data with previously published climate proxies from MD99-2269 was carried out on a data set which consisted of 14-variable data set covering the interval 400-9200 cal yr BP at 100 yr time steps. This analysis indicated that the 1st two PC axes accounted for 57% of the variability with high loadings clustering primarily into "nutrient" and "temperature" proxies. Clustering on the 100 yr time-series indicated major changes in environment at ~6350 and ~3450 cal yr BP, which define early, mid- and late Holocene climatic intervals. We argue that a pervasive freshwater cap during the early Holocene resulted in warm SST°s, a stratified water column, and a depleted nutrient supply. The loss of the freshwater layer in the mid-Holocene resulted in high carbonate production, and the late Holocene/neoglacial interval was marked by significantly more variable sea surface conditions.
Resumo:
Ferromanganese concretions from ten stations in the Barents Sea have been analysed for 24 elements. The deposits occur as discoidal and flat concretions and as coatings, in the latter case on lithified or detrital material or as extensive pavements on the Svalbard shelf. The concretions are compositionally similar to Baltic concretions but differ considerably from deep-ocean nodules, particularly in Cu, Ni and Co contents. Statistical analyses reveal distinct correlations between Mn, Na, Ba, Ni and Cu; the Mn-rich coatings showed enrichment of Mo, Zn and possibly Co in a Mn-phase. The iron phase holds high concretions of P and As. Two iron-rich concretions with high contents of P, Ca, Sr, Y, Yb and La were found east and northeast of Spitsbergen Banken, probably indicating upwelling of nutrient-rich, cold polar water along the Svalbard shelf.
Resumo:
The surface layer of bottom sediments on the Barents Sea shelf has an irregular but generally very low abundance of diatoms. Tests of species belonging to present-day diatom flora were absent in nearly half of samples; their abundance was only a few shells per gram of dry sediment in 30% of the samples, it was up to 100 shells per gram in 9% of the samples, and was in thousands of shells per gram in only 13% of the samples. The lowest abundances of diatom shells were found in sediments of the eastern and northeastern parts of the sea owing to unfavorable sedimentation conditions and deficiency of dissolved silica in water. But distribution of diatom species on the surface of bottom sediments is strictly consistent with their present-day ranges. About 30% of the samples contained re-deposited Cretaceous and Paleogene diatoms indicating that bottom sediments have largely formed by scouring and re-deposition of underlying material.
Resumo:
Geochemical records are presented for five sediment cores from basins on the continental shelf of Mac. Robertson Land, East Antarctica. The cores contain 2-4 m thick sequences of hemipelagic, siliceous mud and ooze (SMO) deposited under seasonally open marine conditions. The inner and middle shelf SMO sequences are massive dark olive green material, whereas the outer shelf SMO sequences are dark olive material interspersed with light olive green layers ~1-10 cm thick. The biogenic material is dominated by marine diatoms including Fragilariopsis curta, Fragilariopsis cylindrus, and Chaetoceros spp. in the dark-colored SMO and Corethron criophilum in the light-colored layers. Radiocarbon dates suggest that the cores provide continuous accumulation records extending from < 1 kyr before present (B.P.) back as far as 4-15 kyr B.P., with estimated accumulation rates of 0.07-5 mm/yr. The three core records from the middle and outer shelf suggest six episodes of increased accumulation of biogenic material at ~5.5 kyr B.P. (all three cores), 1, 2, and 6.2 kyr B.P. (two of the three cores), and 3.8 and 10.8 kyr B.P. (one core), most of which coincide with Corethron layers. We interpret these features as the result of enhanced diatom production over the outer shelf, possibly related to climatic warm periods. The absence of such features in the inner shelf core records is thought to reflect a relatively constant level of seasonal diatom production in adjacent waters maintained by a coastal polynya.
Resumo:
Abstract: The history of grounded ice-sheet extent on the southern Weddell Sea shelf during the Last Glacial Maximum (LGM) and the timing of post-LGM ice-sheet retreat are poorly constrained. Several glaciological models reconstructed widespread grounding and major thickening of the Antarctic Ice Sheet in the Weddell Sea sector at the LGM. In contrast, recently published onshore data and modelling results concluded only very limited LGM-thickening of glaciers and ice streams feeding into the modern Filchner and Ronne ice shelves. These studies concluded that during the LGM ice shelves rather than grounded ice covered the Filchner and Ronne troughs, two deep palaeo-ice stream troughs eroded into the southern Weddell Sea shelf. Here we review previously published and unpublished marine geophysical and geological data from the southern Weddell Sea shelf. The stratigraphy and geometry of reflectors in acoustic sub-bottom profiles are similar to those from other West Antarctic palaeo-ice stream troughs, where grounded ice had advanced to the shelf break at the LGM. Numerous cores from the southern Weddell Sea shelf recovered sequences with properties typical for subglacially deposited tills or subglacially compacted sediments. These data sets give evidence that grounded ice had advanced across the shelf during the past, thereby grounding in even the deepest parts of the Filchner and Ronne troughs. Radiocarbon dates from glaciomarine sediments overlying the subglacial deposits are limited, but indicate that the ice grounding occurred at the LGM and that ice retreat started before ~15.1 corrected 14C kyrs before present (BP) on the outer shelf and before ~7.7 corrected 14C kyrs BP on the inner shelf, which is broadly synchronous with ice retreat in other Antarctic sectors. The apparent mismatch between the ice-sheet reconstructions from marine and terrestrial data can be attributed to ice streams with very low surface profiles (similar to those of "ice plains") that had advanced through Filchner Trough and Ronne Trough at the LGM. Considering the global sea-level lowstand of ~130 metres below present, a low surface slope of the expanded LGM-ice sheet in the southern Weddell Sea can reconcile grounding-line advance to the shelf break with limited thickening of glaciers and ice streams in the hinterland. This scenario implies that ice-sheet growth in the Weddell Sea sector during the LGM and ice-sheet drawdown throughout the last deglaciation could only have made minor contributions to the major global sea-level fluctuations during these times.
Resumo:
Geologie cores on two profiles oriented normaly to the continental shelf and slope, have been investigated to reconstruct the Quaternary sedimentary history of the southeast continental border of South Orkney (NW Weddell Sea). The sediments were described macroscopically and their fabric investigated by use of X-radiographs. Laboratory work comprised detailed grain-size analysis, determination of the watercontent, carbonate, organic carbon and sand fraction.composition. Stable oxygen and carbon isotopes have been measured On planktonic foraminifera. Palaeomagnetism, analysis of 230Th-content and detailed comparison of the lithlogic Parameters with the oxygen isotope stages (Martinson curve) were used for stratigraphic classification of the sediments. The sediment cores from the continental slope comprise a maximum age of 300,000 years B. P.. Bottom currents, ice rafting and biogenic input are the main sources of sediment. Based on lithologic parameters a distinction between glacial and interglacial facies is possible. Silty clays without microfossils and few bioturbation characterise the sediments of the glacial facies. Only small amounts of icerafted debris can be recognized. This type of sediment was accumulated during times of lower sea-level and drastically reduced rate of bottom water production. Based on grain-size distribution, bottom current velocities of 0.01 cmls were calculated. Thick sea-ice coverage reduced biogenic production in the surface water, and as consequence benthic communities were depleted. Because of the reduced benthic life, sediments are only slithly bioturbated. At the beginning of the interglacial Stage, the sea-level rised rapidly, and calving rate of icebergs, combined with input of ice-rafted material, increased considerably. Sediments of this transition facies are silty cliiys with a high proportion of coarse ice-rafted debris, but without microfossils. With the onset of bottom water production in connection with shelf ice water, sediments of interglacial facies were formed. They consist of silty clays to clayey silts with considerable content of sand and gravel. Sediments are strongly bioturbated. Based On the sediment caracteristics, current velocities of the bottom water were calculated to be of 0.96 cmls for interglacials. At the southern slope of a NW/SE-striking ridge, bottom water current is channelized, resulting in a drastic increase of current velocities. Current velocities up to 7.5 cm/s lead to formation of residual sediments. While the continental slope has predominantly fine sediments, the South Orkney shelf are mainly sandy silts and silty sands with a high proportion of gravel. These sediments were formed dominantly by ice-rafting during Brunhes- and Matuyama-Epoch. Currents removed the fine fraction of the sediments. Based on microfossil contents it was not possible to differentiate sediments from glacial to interglacial. In the upper Parts of the cores graded sequences truncated by erosion were observed. These sequences were formed during Brunhes-Epoch by strong currents with velocities decreasing periodically from about 7.5 cm/s to about 1 cm/s. Sediments with a high proportion of siliceous microfossils but barren of foraminifera compose the lower part of the shelf cores. These sediments have formed during the warmer Matuyama-Epoch.
Resumo:
The sediments of 14 box cores and 7 gravity cores, mainly taken directly in front of the Filchner(-Ronne) ice shelf northwest of Berkner Island (Weddell Sea), allowed to distinguish six sediment types. On the one hand,the retreat of the at first grounded and then floated ice from the last glacial maximum is documented. On the other hand,the sediments give an insight into extensive Holocene sediment deposition and remobilization northwest of Berkner Island. The ortho till was deposited directly by the grounded ice sheet and is lacking any marine influence. After floating of the ice shelf, partly very weIl stratified, partly unstratified, non-bioturbated paratill is deposited beneath the ice shelf. Lack of IRD-content in the paratill immediately above the orthotill indicates freezing at the bottom of the ice, at least for a short period after the ice became afloat. The orthotill and paratill contain small amounts of fragmented Tertiary diatoms, which allow the conclusion, that glacial-marine sediments in the accumulation area of the Ronne ice shelf will be eroded and later deposited by ice in the investigation area. Starting of bioturbation and therefore change in sedimentation from paratill to bioturbated paratill,is caused by the retreat of the ice shelf to its actual position. Isostatic uplift of the sea-bed after the Ice Age causes minor water depths with higher current velocities. The fine-fraction is eroding and mean particle-size will increase. Maybe, also isostatic uplift is responsible for repeated great advances of the floated ice shelf as shown in an erosional horizon in some cores containing bioturbated paratill. Postglacial sediment-thicknesses exceed 3 m. Assuming floating of the ice 15.000 YBP, accumulation rates reach nearly 20cm/lOOO years. Following the theories about sediment input in front of wide ice shelves, this was not expected. In the shallower water depths of Berkner Bank, the oscillations of the ice shelf are recorded in the sediments. Sorting and redistribution by high current velocities from beneath the ice up to the calving line, lead to the deposition of the weIl to very weIl sorted sandy till. In front of the calving line the finer fraction will settle down. Remobilization is possible by bioturbation and increasing current-velocity. According to the intensity of mixing of the sandy till with the fine fraction, modified till or muddy till results.