633 resultados para electron-hole separation
Resumo:
The sediments collected at Sites 1150 and 1151 during Leg 186 included many tephra layers and volcaniclastic detritus. In order to identify these tephras, the major oxide compositions of individual glass shards were determined by electron probe microanalyzer. The uppermost four tephras in sediments from Hole 1150A are correlated with the Towada-Hachinohe tephra (To-H; Tohoku district), Shikotsu Daiichi (1st) tephra (Spfa-1; Hokkaido district), Narugo-Yanagisawa tephra (Nr-Y; Tohoku district), and Aso-4 tephra (Kyushu district), respectively. The uppermost tephra in Hole 1151C is correlated with To-H tephra. To-H, Spfa-1, and Aso-4 tephras are also present in piston core KH94-3, LM-8, collected between Sites 1150 and 1151. Eruptive ages of To-H and Spfa-1 estimated from the oxygen isotopic Stages of core KH94-3, LM-8 are between 14.9-15.3 and 39.5-40.1 ka.
Effective stress, porosity, p-wave velocity and mineral composition of ODP Hole 174A-1073A sediments
Resumo:
Porosity, permeability, and compressional (P-wave) velocity were measured as a function of stress on sediments from Ocean Drilling Program Site 1073, U.S. Mid-Atlantic continental slope. Thin sections, scanning electron microscopy, and X-ray diffraction analyses provided mineralogical characteristics of the samples. Uniaxial strain boundary conditions were imposed on the samples during consolidation tests with the maximum effective axial stress reaching 13 MPa. The maximum effective radial stress necessary to maintain uniaxial strain was 7.6 MPa. Over an effective axial stress interval of 0 to 5.2 MPa, Sample 174A-1073A-26X-2, 82-89 cm (226.65 meters below seafloor [mbsf]), exhibited the largest decrease in porosity (51% to 41%), whereas Sample 71X-1, 2-8 cm (644.70 mbsf), exhibited the smallest decrease in porosity (48% to 45%). All samples showed negligible porosity increases during unloading. The permeability (on the order of 1 x 10-17 m**2) of Sample 174A-1073A-71X-1, 2-8 cm, was twice that measured on Sample 8H-1, 23-26 cm (63.75 mbsf), even though the former was considerably deeper and older. The differences in porosity-stress behavior and permeability between shallow and deep samples is related to lithologic, mineralogic, and diagenetic differences between the sediments above and below the Pliocene-Pleistocene to Miocene unconformity. P-wave velocity for Samples 174A-1073A-41X-5, 97-103 cm (372.35 mbsf), and 71X-1, 2-8 cm, increased with decreasing porosity, but did not change significantly during unloading.
Resumo:
Diagenesis of the fine-grained, feldspathic sandstones in the Lower Cretaceous submarine fan complex cored in DSDP Hole 603B can be considered to have occurred in three stages: (1) replacement of matrix and framework grains by pyrite, siderite, phillipsite (?), and particularly by ferroan calcite; (2) dissolution of ferroan calcite and feldspars to produce secondary macroporosity; and (3) development of sparse feldspar and quartz overgrowths, and authigenic modification of remnant matrix. Only ferroan calcite is a volumetrically important diagenetic mineral phase (up to 50 vol.%). Matrix in thin sandstone turbidite deposits has been extensively replaced by ferroan calcite. Carbon stable isotope data suggest that organic diagenesis had only a minor influence on calcite precipitation. Oxygen stable isotope data indicate that the minimum average calcite precipitation temperature was 40° C. Preliminary calculations show that steadystate diffusion of Ca+ + from the dissolution of nannoplankton skeletal material in the interbedded pelagic marls to the associated sandstones is a feasible transport mechanism. A thick sandstone unit from 1234-1263 m sub-bottom is extensively replaced by calcite near the upper and lower contacts. Farther into the sand body away from the contacts, the sandstone has good secondary porosity resulting from the dissolution of ferroan calcite that partially replaced matrix and framework grains. The central portion of the thick sand appears to be a channel with high-energy clean sand. We believe that the channel provided a conduit for focused flow of diagenetic compactional fluids responsible for dissolution. Focused flow may be the result of the earlier lithification of the pelagic limestones and thin-bedded sandstones which, then formed vertical permeability barriers. Calcite dissolution has occurred and may still be occurring at temperatures less than 65°C.
Resumo:
Coring during Ocean Drilling Program and Deep Sea Drilling Project Legs 163, 152, 104, 81, and 38 recovered sequences of altered basalt from North Atlantic seaward-dipping reflector sequences (SDRS) erupted during the initial rifting of Greenland from northern Europe and likely associated with excessive mantle temperatures caused by an impacting mantle plume head. Cr-rich spinel is found abundantly as inclusions and groundmass crystals within the olivine-rich lavas of Hole 917A (Leg 152) cored into the Southeast Greenland SDRS, but only rarely as inclusions within plagioclase in the lavas of the Vøring Plateau SDRS, and it is absent from other cored SDRS lavas from the Rockall Plateau and Southeast Greenland. Eruptive melt compositions determined from inferred, thermodynamically-defined, spinel-melt exchange equilibria indicate that the most primitive melts represented by Hole 917A basalts have Mg/(Mg + Fe2+) at least as high as 0.70 and approach near-primary mantle melt compositions. In contrast, Cr-rich spinels from Hole 338 (Leg 38) lavas on the Vøring Plateau SDRS give evidence for melt with Mg/(Mg + Fe2+) only as high as 0.64. This study underlines that primitive melts similar to those from Hole 917A comprise only a small fraction of the eruptive North Atlantic SDRS melts, and that most SDRS basalts were, in fact, too evolved to have precipitated Cr-rich spinel, with true melt Mg/(Mg + Fe2+) likely below 0.60. The evolved nature of the SDRS basalts implies large amounts of fractionation at the base of the crust or deep within it, consistent with seismic results that indicate an abnormally thick Layer 3 underlying the SDRS.