368 resultados para electron probe data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During ODP Leg 168, 10 sites were drilled across the eastern flank of the Juan de Fuca Ridge (JdFR), to examine the conditions of fluid-rock interaction in three distinct hydrothermal regimes (referred to as the Hydrothermal Transition (HT), Buried Basement (BB) and Rough Basement (RB) transects), extending over a ~120 km linear transect perpendicular to the spreading ridge. This was carried out in an attempt to constrain the conditions and processes that control the location, style and magnitude of low temperature (<150°C) fluid-rock interaction within this setting. This paper presents new data on the petrology, mineral chemistry and whole rock strontium and oxygen isotopic compositions of basalts from the eastern flank of the JdFR, in order to investigate the extent, style and sequence of low-temperature hydrothermal alteration and to establish how the hydrothermal regime evolved with time. Throughout the flank, a progressive sequence of low-temperature hydrothermal alteration has been identified, marked by changes in the dominant secondary mineral assemblage, changing from: chlorite+chlorite/smectite; to iron oyxhydroxide+celadonite; to saponite+/-pyrite; culminating at present with Ca- to CaMg(+/-Fe,Mn)-carbonate. The changes in secondary mineralogy have been used to infer a series of systematic shifts in the conditions of alteration that occurred as the basement moved off-axis and was progressively buried by sediment. In general, hydrothermal alteration of the uppermost oceanic crust commenced under open, oxidative conditions, with interaction between unmodified to slightly modified seawater and basaltic crust, to a regime in which circulation of a strongly modified seawater-derived fluid was more restricted, and alteration occurred under non-oxidative conditions. Across the flank, petrological observations and microprobe analyses indicate that the observed ranges in secondary mineral composition are directly related to changes in the geochemical and textural characteristics of the basement, as well as to interaction between fluids and phases from the four stages of alteration. This is suggestive of an increase in fluid-rock increased with time. Whole rock 87Sr/86Sr and d18O analyses of basalts from across the eastern flank of the JdFR reinforce petrological observations, with 87Sr/86Sr and d18O values slightly elevated above accepted pristine MORB values for this region. These results are consistent with an increase in the amount of fluid-rock interaction with time. Across the flank, enrichment in the 87Sr/86Sr and d18O relative to MORB, is influenced by a number of factors, including: local and regional variations in the crustal lithology and structure; the age of the crust; the extent of bulk rock alteration; and theoretically, the relative abundance of different isotopically-enriched secondary mineral phases in the crust.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major and trace element profiles of clinopyroxene grains in oceanic gabbros from ODP Hole 735B have been investigated by a combined in situ analytical study with ion probe, and electron microprobe. In contrast to the homogeneous major element compositions, trace elements (REE, Y, Cr, Sr, and Zr) show continuous core to rim zoning profiles. The observed trace element systematics in clinopyroxene cannot be explained by a simple diffusive exchange between melts and gabbros along grain boundaries. A simultaneous modification of the melt composition is required to generate the zoning, although Rayleigh fractional crystallization modelling could mimic the general shape of the profiles. Simultaneous metasomatism between the cumulate crystal and the porous melt during crystal accumulation is the most likely process to explain the zoning. Deformation during solidification of the crystal mush could have caused squeezing out of the incompatible element enriched residual melts (interstitial liquid). Migration of the melt along grain boundaries might carry these melt out of the system. This process named as synkinematic differentiation or differentiation by deformation (Natland and Dick, 2001, doi:10.1016/S0377-0273(01)00211-6) may act as an important magma evolution mechanism in the oceanic crust, at least at slow-spreading ridges.