412 resultados para Water masses
Resumo:
The Late Weichselian-Early Holocene variability of the North Atlantic Current has been studied with focus on the zonal component of this meridional transport during the transition from glacial to interglacial conditions. The investigated sediment core is from 409 m water depth in the SW Barents Sea. Eight Accelerator mass spectrometry (AMS) 14C dates show that the core covers the last 20,000 cal yr B.P. with a centennial scale resolution during Late Weichselian-Early Holocene. Planktic foraminiferal assemblages were analyzed using the >100 ?m size fraction and foraminiferal planktic and benthic d13C and d18O isotopes were measured. Furthermore, a range of physical and chemical analyses has been carried out on the bulk sediment samples. Four time periods have been identified which represent the varying oceanographic conditions in Ingøydjupet, a glacial trough located off the north coast of Norway in the SW Barents Sea. 1) The late glacial (before ca 15,000 cal yr B.P.) influenced by the nearby ice sheets with high amounts of sea ice- or iceberg-transported detritus. 2) The late Oldest Dryas stadial and the Bølling-Allerød interstadial (ca 15,000-12,700 cal yr B.P.) with cold surface water conditions influenced by the collapse of the nearby ice sheets, high amounts of sea ice- or iceberg-transported detritus and melt water and weak subsurface inflow of Atlantic Water. 3) The Younger Dryas cold stadial (12,700-11,650 cal yr B.P.) with low primary productivity and extensive sea ice cover and 4) The Preboreal and Early Holocene (11,650-6800 cal yr B.P. cal yr B.P.) with strong influx of Atlantic Water into the area, near absence of ice rafted debris and generally ameliorated conditions in both surface and bottom water masses as seen from a high flux of foraminifera and increased marine primary production.
Resumo:
Low planktic and benthic d18O and d13C values in sediments from the Nordic seas of cold stadials of the last glaciation have been attributed to brines, formed similar to modern ones in the Arctic Ocean. To expand on the carbon isotopes of this hypothesis I investigated benthic d13C from the modern Arctic Ocean. I show that mean d13C values of live epibenthic foraminifera from the deep Arctic basins are higher than mean d13C values of upper slope epibenthic foraminifera. This agrees with mean high d13C values of dissolved inorganic carbon (DIC) in Arctic Bottom Water (ABW), which are higher than mean d13CDIC values from shallower water masses of mainly Atlantic origin. However, adjustments for oceanic 13C-Suess depletion raise subsurface and intermediate water d13CDIC values over ABW d13CDIC ones. Accordingly, during preindustrial Holocene times, the d13CDIC of ABW was as high or higher than today, but lower than the d13CDIC of younger subsurface and intermediate water. If brine-enriched water significantly ventilated ABW, brines should have had high d13CDIC values. Analogously, high-d13CDIC brines may have been formed in the Nordic seas during warm interstadials. During cold stadials, when most of the Arctic Ocean was perennially sea-ice covered, a cessation of high-d13CDIC brine rejection may have lowered d13CDIC values of ABW, and ultimately the d13CDIC in Nordic seas intermediate and deep water. So, in contrast to the idea of enhanced brine formation during cold stadials, the results of this investigation imply that a cessation of brine rejection would be more likely.
Resumo:
Planktonic foraminifera from Pliocene - Early Quaternary sediments of ODP Hole 111-677A were studied in detail. It was shown that the majority of detected zonal taxa are reliable biostratigraphic reference points. Between 30 and 210 m in the core zones of planktonic foraminifera from PL1b to Pt1 (according to the W.A. Berggren scale) were distinguished. Changes of planktonic foraminifera complexes from sediments of Hole 111-677A are closely associated with climate-controlled development of surface water masses of the Eastern Equatorial Pacific during 4.6-0.65 million years ago. Sharp decrease in equatorial-tropical species about 3.4 million years ago correlated with cessation of surface water exchange between tropical regions of the Pacific and Atlantic oceans due to formation of the Central American isthmus. The paleotemperature method of M.S Barash was used for reconstructing surface temperatures. Maximum temperatures were reconstructed in late Early Pliocene (26.4°C) and in Late Pliocene (26.6°C) and minimum ones - in the beginning of Early Pliocene (18.4°C), in the middle of Late Pliocene (19.6°C). Cold events occurred: 4.6-4.3, 2.8-2.5, and 1.7-1.2 million years ago, and warm: 4.3, 4.18-3.4, 2.5-2.3, and 1 million years ago. In general, the middle of Early Pliocene, the middle of late Pliocene and early Pleistocene are characterized by cold-water conditions, and the end of Early and the end of Late Pliocene - by warm-water conditions.
Resumo:
A series of cores from east of New Zealand have been examined to determine the paleoceanographic history of the late Quaternary in the SW Pacific using planktonic foraminiferal data. Distinct shifts of species can be seen between glacial and interglacial times especially south of Chatham Rise east of South Island. Foraminiferal fragmentation ratios and benthic/planktonic foraminiferal ratios both show increased dissolution during glacials, especially isotope stage 2 to the south of Chatham Rise. The present-day Subtropical Convergence appears to be tied to the Chatham Rise at 44°S, but during glacial times this rise separated cold water to the south from much warmer water to the north, with an associated strong thermal gradient across the rise. We estimate that this gradient could have presented as much as an 8°C temperature change across 4°C of latitude during the maximum of the last ice age. There is only weak evidence of the Younger Dryas cool event, but there is a clear climatic optimum between 8 and 6.4 ka with temperatures 1°-2°C higher than the present day. The marine changes compare well with vegetational changes on both South and North Island.
Resumo:
The oceanic carbon cycle mainly comprises the production and dissolution/ preservation of carbonate particles in the water column or within the sediment. Carbon dioxide is one of the major controlling factors for the production and dissolution of carbonate. There is a steady exchange between the ocean and atmosphere in order to achieve an equilibrium of CO2; an anthropogenic rise of CO2 in the atmosphere would therefore also increase the amount of CO2 in the ocean. The increased amount of CO2 in the ocean, due to increasing CO2-emissions into the atmosphere since the industrial revolution, has been interpreted as "ocean acidification" (Caldeira and Wickett, 2003). Its alarming effects, such as dissolution and reduced CaCO3 formation, on reefs and other carbonate shell producing organisms form the topic of current discussions (Kolbert, 2006). Decreasing temperatures and increasing pressure and CO2 enhance the dissolution of carbonate particles at the sediment-water interface in the deep sea. Moreover, dissolution processes are dependent of the saturation state of the surrounding water with respect to calcite or aragonite. Significantly increased dissolution has been observed below the aragonite or calcite chemical lysocline; below the aragonite compensation depth (ACD), or calcite compensation depth (CCD), all aragonite or calcite particles, respectively, are dissolved. Aragonite, which is more prone to dissolution than calcite, features a shallower lysocline and compensation depth than calcite. In the 1980's it was suggested that significant dissolution also occurs in the water column or at the sediment-water interface above the lysocline. Unknown quantities of carbonate produced at the sea surface, would be dissolved due to this process. This would affect the calculation of the carbonate production and the entire carbonate budget of the world's ocean. Following this assumption, a number of studies have been carried out to monitor supralysoclinal dissolution at various locations: at Ceara Rise in the western equatorial Atlantic (Martin and Sayles, 1996), in the Arabian Sea (Milliman et al., 1999), in the equatorial Indian Ocean (Peterson and Prell, 1985; Schulte and Bard, 2003), and in the equatorial Pacific (Kimoto et al., 2003). Despite the evidence for supralysoclinal dissolution in some areas of the world's ocean, the question still exists whether dissolution occurs above the lysocline in the entire ocean. The first part of this thesis seeks answers to this question, based on the global budget model of Milliman et al. (1999). As study area the Bahamas and Florida Straits are most suitable because of the high production of carbonate, and because there the depth of the lysocline is the deepest worldwide. To monitor the occurrence of supralysoclinal dissolution, the preservation of aragonitic pteropod shells was determined, using the Limacina inflata Dissolution Index (LDX; Gerhardt and Henrich, 2001). Analyses of the grain-size distribution, the mineralogy, and the foraminifera assemblage revealed further aspects concerning the preservation state of the sediment. All samples located at the Bahamian platform are well preserved. In contrast, the samples from the Florida Straits show dissolution in 800 to 1000 m and below 1500 m water depth. Degradation of organic material and the subsequent release of CO2 probably causes supralysoclinal dissolution. A northward extension of the corrosive Antarctic Intermediate Water (AAIW) flows through the Caribbean Sea into the Gulf of Mexico and might enhance dissolution processes at around 1000 m water depth. The second part of this study deals with the preservation of Pliocene to Holocene carbonate sediments from both the windward and leeward basins adjacent to Great Bahama Bank (Ocean Drilling Program Sites 632, 633, and 1006). Detailed census counts of the sand fraction (250-500 µm) show the general composition of the coarse grained sediment. Further methods used to examine the preservation state of carbonates include the amount of organic carbon and various dissolution indices, such as the LDX and the Fragmentation Index. Carbonate concretions (nodules) have been observed in the sand fraction. They are similar to the concretions or aggregates previously mentioned by Mullins et al. (1980a) and Droxler et al. (1988a), respectively. Nonetheless, a detailed study of such grains has not been made to date, although they form an important part of periplatform sediments. Stable isotopemeasurements of the nodules' matrix confirm previous suggestions that the nodules have formed in situ as a result of early diagenetic processes (Mullins et al., 1980a). The two cores, which are located in Exuma Sound (Sites 632 and 633), at the eastern margin of Great Bahama Bank (GBB), show an increasing amount of nodules with increasing core depth. In Pliocene sediments, the amount of nodules might rise up to 100%. In contrast, nodules only occur within glacial stages in the deeper part of the studied core interval (between 30 and 70 mbsf) at Site 1006 on the western margin of GBB. Above this level the sediment is constantly being flushed by bottom water, that might also contain corrosive AAIW, which would hinder cementation. Fine carbonate particles (<63 µm) form the matrix of the nodules and do therefore not contribute to the fine fraction. At the same time, the amount of the coarse fraction (>63 µm) increases due to the nodule formation. The formation of nodules might therefore significantly alter the grain-size distribution of the sediment. A direct comparison of the amount of nodules with the grain-size distribution shows that core intervals with high amounts of nodules are indeed coarser than the intervals with low amounts of nodules. On the other hand, an initially coarser sediment might facilitate the formation of nodules, as a high porosity and permeability enhances early diagenetic processes (Westphal et al., 1999). This suggestion was also confirmed: the glacial intervals at Site 1006 are interpreted to have already been rather coarse prior to the formation of nodules. This assumption is based on the grain-size distribution in the upper part of the core, which is not yet affected by diagenesis, but also shows coarser sediment during the glacial stages. As expected, the coarser, glacial deposits in the lower part of the core show the highest amounts of nodules. The same effect was observed at Site 632, where turbidites cause distinct coarse layers and reveal higher amounts of nodules than non-turbiditic sequences. Site 633 shows a different pattern: both the amount of nodules and the coarseness of the sediment steadily increase with increasing core depth. Based on these sedimentological findings, the following model has been developed: a grain-size pattern characterised by prominent coarse peaks (as observed at Sites 632 and 1006) is barely altered. The greatest coarsening effect due to the nodule formation will occur in those layers, which have initially been coarser than the adjacent sediment intervals. In this case, the overall trend of the grain-size pattern before and after formation of the nodules is similar to each other. Although the sediment is altered due to diagenetic processes, grain size could be used as a proxy for e.g. changes in the bottom-water current. The other case described in the model is based on a consistent initial grain-size distribution, as observed at Site 633. In this case, the nodule reflects the increasing diagenetic alteration with increasing core depth rather than the initial grain-size pattern. In the latter scenario, the overall grain-size trend is significantly changed which makes grain size unreliable as a proxy for any palaeoenvironmental changes. The results of this study contribute to the understanding of general sedimentation processes in the periplatform realm: the preservation state of surface samples shows the influence of supralysoclinal dissolution due to the degradation of organic matter and due to the presence of corrosive water masses; the composition of the sand fraction shows the alteration of the carbonate sediment due to early diagenetic processes. However, open questions are how and when the alteration processes occur and how geochemical parameters, such as the rise in alkalinity or the amount of strontium, are linked to them. These geochemical parameters might reveal more information about the depth in the sediment column, where dissolution and cementation processes occur.
Resumo:
Over the past 13 kyr the most significant natural changes in the Reykjanes ridge region took place within 13-7.8 kyr B.P. They resulted from alternating intensifications of the influence of the Labrador (LWM) and Norwegian-Greenland (NGWM) water masses. During 13-11.7 kyr B.P. natural conditions were governed by influence of LWM with sea surface temperature (SST) 3-5°C lower present one. During 11.7-10.3 kyr B.P. NGWM with SST 6-7°C lower present one predominated. During 10.3-9.5 kyr B.P. oceanographic conditions were rapidly transforming and approaching present ones controlled by interaction between LWM and North Atlantic water masses; SST abruptly increased almost to the present value. During 9.5-8.3 kyr B.P. intensification of NGWM led to small decrease of SST (1.5-2.5°C below present value; between 8.3 and 7.8 kyr B.P. natural conditions had approximated present ones and later on remained relatively stable; SST fluctuated with an amplitude of about 1.5°C.
Resumo:
A high-resolution record of radiolarian faunal changes from Site Y8 south of the Subtropical Front (STF), offshore eastern New Zealand, provides insight into the paleoceanographic history of the last 265 kyrs. Quantitative analysis of radiolarian paleotemperature indicators and radiolarian-based sea surface temperature (SST) estimates reveal distinct shifts during glacial-interglacial (G-I) climate cycles encompassing marine isotope stages (MIS) 8-1. Faunas at Site Y8 are abundant and diverse and consist of a mixture of species typical of the subantarctic, transitional and subtropical zones which is characteristic of subantarctic waters just south of the STF. During interglacials, diverse radiolarian faunas have increased numbers of warm-water taxa (not, vert, similar 15%) while cool-water taxa decrease to not, vert, similar 11% of the assemblage. Warmest climate conditions occurred during MIS 5.5 and the early Holocene Climatic Optimum (HCO) at the onset of MIS 1 where SSTs reach maxima of 12.8 and 12.9 °C, respectively. This suggests that temperatures during the HCO were comparable to the Eemian, one of the warmest interglacial intervals of the Late Quaternary. Glacials are characterized by less diverse radiolarian faunas with cool-water taxa increasing to 49% of the assemblage. Coolest climate conditions occurred in MIS 4 and 2 where SSTs are reduced to 5.4 °C and 4.3 °C, respectively. Radiolarian faunal changes and SST estimates clearly identify major water masses and oceanic fronts in the offshore eastern New Zealand area. During warmest MIS 5.5 and early MIS 1 substantial influence of northern-sourced Subtropical Surface Water (STW) is evident at Site Y8. This implies southward incursions of STW around the eastern crest of Chatham Rise with the STF displaced towards higher latitudes and spinning off eddies as far south as Campbell Plateau. Additionally, increased flow of the Southland Current (SC) might have enhanced the local occurrence of warm-water radiolarians derived from the subtropical Tasman Sea. Coolest glacials are marked by a strong inflow of cool, southern-sourced waters at Site Y8 indicating a more vigorous flow along the Subantarctic Front (SAF).
Resumo:
During the austral summer expedition PS81, ANT-XXIX/3 with the German research ice breaker Polarstern in 2013, research was carried out to investigate the role of environmental factors on the distribution of benthic communities and marine mammal and krill densities around the northern tip of the Antarctic Peninsula. For these studies collated in this special issue and studies in this area, we present a collection of environmental parameters with probable influence on the marine ecosystems around the Antarctic Peninsula.
Resumo:
Independent proxies were assessed in two Late Quaternary sediment cores from the eastern South Atlantic to compare deep-water changes during the last 400 kyr. Two cores were recovered from beneath North Atlantic Deep Water (NADW) at approximately 3 000 m depth. Late Quaternary presence of NADW is indicated by the Cibicidoides wuellerstorfi assemblage on the Walvis Ridge (Core GeoB 1214) and the Bulimina alazanensis assemblage on the Namibian continental slope (Core GeoB 1710). The propagation of NADW is exclusively observed during interglacials, with maximum factor loadings in Stages 1, 5, 7, 9 and 11. These maxima are consistent with peaks in kaolinite/chlorite ratios and maxima of poorly crystalline smectite in the clay-mineral record. Kaolinite and poorly crystalline smectite are products of intense chemical weathering. They are injected into the NADW at low latitudes, north of the study area, and advected south. Chlorite, which is stable under cold weathering regimes, is a characteristic mineral of water masses of southern origin. During glacial stages, it is advected north with Southern Component Water (SCW). Above the NADW/SCW depths, kaolinite/chlorite ratios vary only slightly without a significant glacial-interglacial pattern, as measured in a core (GeoB 1712) from 1 000 m deep on the same profile of the Namibian continental slope off Walvis Bay.
Resumo:
The modern Atlantic Ocean, dominated by the interactions of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW), plays a key role in redistributing heat from the Southern to the Northern Hemisphere. In order to reconstruct the evolution of the relative importance of these two water masses, the NADW/AABW transition, reflected by the calcite lysocline, was investigated by the Globigerina bulloides dissolution index (BDX?). The depth level of the Late Glacial Maximum (LGM) calcite lysocline was elevated by several hundred metres, indicating a more corrosive water mass present at modern NADW level. Overall, the small range of BDX? data and the gradual decrease in preservation below the calcite lysocline point to a less stratified Atlantic Ocean during the LGM. Similar preservation patterns in the West and East Atlantic demonstrate that the modern west-east asymmetry did not exist due to an expansion of southern deep waters compensating for the decrease in NADW formation.
Resumo:
Differences in bioaccumulation of persistent organic pollutants (POPs) between fjords characterized by different water masses were investigated by comparing POP concentrations, patterns and bioaccumulation factors (BAFs) in seven species of zooplankton from Liefdefjorden (Arctic water mass) and Kongsfjorden (Atlantic water mass), Svalbard, Norway. No difference in concentrations and patterns of POPs was observed in seawater and POM; however higher concentrations and BAFs for certain POPs were found in species of zooplankton from Kongsfjorden. The same species were sampled in both fjords and the differences in concentrations of POPs and BAFs were most likely due to fjord specific characteristics, such as ice cover and timing of snow/glacier melt. These confounding factors make it difficult to conclude on water mass (Arctic vs. Atlantic) specific differences and further to extrapolate these results to possible climate change effects on accumulation of POPs in zooplankton. The present study suggests that zooplankton do biomagnify POPs, which is important for understanding contaminant uptake and flux in zooplankton, though consciousness regarding the method of evaluation is important.
Resumo:
Live (Rose Bengal stained) and dead benthic foraminifera of surface and subsurface sediments from 25 stations in the eastern South Atlantic Ocean and the Atlantic sector of the Southern Ocean were analyzed to decipher a potential influence of seasonally and spatially varying high primary productivity on the stable carbon isotopic composition of foraminiferal tests. Therefore, stations were chosen so that productivity strongly varied, whereas conservative water mass properties changed only little. To define the stable carbon isotopic composition of dissolved inorganic carbon (d13CDIC) in ambient water masses, we compiled new and previously published d13CDIC data in a section running from Antarctica through Agulhas, Cape and Angola Basins, via the Guinea Abyssal Plain to the Equator. We found that intraspecific d13C variability of all species at a single site is constantly low throughout their distribution within the sediments, i.e. species specific and site dependent mean values calculated from all subbottom depths on average only varied by +/-0.09 per mil. This is important because it makes the stable carbon isotopic signal of species independent of the particular microhabitat of each single specimen measured and thus more constant and reliable than has been previously assumed. So-called vital and/or microhabitat effects were further quantified: (1) d13C values of endobenthic Globobulimina affinis, Fursenkoina mexicana, and Bulimina mexicana consistently are by between -1.5 and -1.0 per mil VPDB more depleted than d13C values of preferentially epibenthic Fontbotia wuellerstorfi, Cibicidoides pachyderma, and Lobatula lobatula. (2) In contrast to the Antarctic Polar Front region, at all stations except one on the African continental slope Fontbotia wuellerstorfi records bottom water d13CDIC values without significant offset, whereas L. lobatula and C. pachyderma values deviate from bottom water values by about -0.4 per mil and -0.6 per mil, respectively. This adds to the growing amount of data on contrasting cibicid d13C values which on the one hand support the original 1:1-calibration of F. wuellerstorfi and bottom water d13CDIC, and on the other hand document severe depletions of taxonomically close relatives such as L. lobatula and C. pachyderma. At one station close to Bouvet Island at the western rim of Agulhas Basin, we interpret the offset of -1.5 per mil between bottom water d13CDIC and d13C values of infaunal living Bulimina aculeata in contrast to about -0.6 +/- 0.1 per mil measured at eight stations close-by, as a direct reflection of locally increased organic matter fluxes and sedimentation rates. Alternatively, we speculate that methane locally released from gas vents and related to hydrothermal venting at the mid-ocean ridge might have caused this strong depletion of 13C in the benthic foraminiferal carbon isotopic composition. Along the African continental margin, offsets between deep infaunal Globobulimina affinis and epibenthic Fontbotia wuellerstorfi as well as between shallow infaunal Uvigerina peregrina and F. wuellerstorfi, d13C values tend to increase with generally increasing organic matter decomposition rates. Although clearly more data are needed, these offsets between species might be used for quantification of biogeochemical paleogradients within the sediment and thus paleocarbon flux estimates. Furthermore, our data suggest that in high-productivity areas where sedimentary carbonate contents are lower than 15 weight %, epibenthic and endobenthic foraminiferal d13C values are strongly influenced by 13C enrichment probably due to carbonate-ion undersaturation, whereas above this sedimentary carbonate threshold endobenthic d13C values reflect depleted pore water d13CDIC values.