845 resultados para Plancton--Norvège--Svalbard


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of desiccation on photochemical processes and nitrogenase activity were evaluated in Nostoc commune s.l. colonies in situ from a wet thufur meadow at Petuniabukta, Billefjorden, Central Svalbard, during the 2009 arctic summer. The colonies were collected in the fully hydrated state, and were subjected to slow desiccation at ambient temperatures (5 - 8°C) and low light (30 - 80 µmol/m**2/s). For each colony the weight, area, photochemical performance, and nitrogenase activity were determined at the beginning, as well as on every day during the first four days of the experiment; thereafter, on every second day until desiccation was complete. The photochemical performance was evaluated from variable chlorophyll fluorescence parameters (FV/FM, Phi(PSII) , qP, and NPQ), and the nitrogenase activity was estimated by an acetylene-ethylene reduction assay. A significant decrease in the photochemically active area was recorded from the third day, when the colony had lost approximately 40% of its original weight indicating some changes in the extracellular matrix, and stopped on the 14th to 18th day. No effects of the desiccation on the main photochemical parameters (FV/FM, Phi(PSII), qP) were observed up to the sixth to eighth days of desiccation. Slightly lower values of FV/FM and Phi(PSII) recorded in fully-hydrated colonies could be caused by impaired diffusion of CO2 into cells. The steep reduction of photochemical activity occurred between the eighth and tenth day of the experiment, when the colony had lost approximately 80% of its fully-hydrated weight. The nitrogenase activity was highest on the first day, probably due to improved diffusion of N2 into cells, then declined, but was detectable until the sixth day of the experiment. Since Nostoc commune s.l. colonies were capable of photosynthesis and nitrogen fixation to the level of ca. 60% of its fully-hydrated weight, even partly-hydrated colonies contribute substantially to carbon and nitrogen cycling in the High Arctic wet meadow tundra ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glaucophane schists of Oscar II Land, it has been suggested, originated in a compressive plate boundary subduction zone environment. An alternative hypothesis is presented here linking the metamorphism of these schists with that of the surrounding pre-Carboniferous rocks. It has been estimated from mineralogical and textural relationships that at the time of metamorphism these rocks exceeded 30 km in thickness. Similarly, an ambient geothermal gradient of 15° C/km has been calculated for the now exposed succession. Pressures of sufficient magnitude would be realised near the base of this geosynclinal pile to produce eclogite from rocks of basic composition. Subsequent synmetamorphic penetrative deformation would give rise to glaucophane and greenschist facies assemblages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three marine sediment cores distributed along the Norwegian (MD95-2011), Barents Sea (JM09-KA11-GC), and Svalbard (HH11-134-BC) continental margins have been investigated in order to reconstruct changes in the poleward flow of Atlantic waters (AW) and in the nature of upper surface water masses within the eastern Nordic Seas over the last 3000 yr. These reconstructions are based on a limited set of coccolith proxies: the abundance ratio between Emiliania huxleyi and Coccolithus pelagicus, an index of Atlantic vs. Polar/Arctic surface water masses; and Gephyrocapsa muellerae, a drifted coccolith species from the temperate North Atlantic, whose abundance changes are related to variations in the strength of the North Atlantic Current. The entire investigated area, from 66 to 77° N, was affected by an overall increase in AW flow from 3000 cal yr BP (before present) to the present. The long-term modulation of westerlies' strength and location, which are essentially driven by the dominant mode of the North Atlantic Oscillation (NAO), is thought to explain the observed dynamics of poleward AW flow. The same mechanism also reconciles the recorded opposite zonal shifts in the location of the Arctic front between the area off western Norway and the western Barents Sea-eastern Fram Strait region. The Little Ice Age (LIA) was governed by deteriorating conditions, with Arctic/Polar waters dominating in the surface off western Svalbard and western Barents Sea, possibly associated with both severe sea ice conditions and a strongly reduced AW strength. A sudden short pulse of resumed high WSC (West Spitsbergen Current) flow interrupted this cold spell in eastern Fram Strait from 330 to 410 cal yr BP. Our dataset not only confirms the high amplitude warming of surface waters at the turn of the 19th century off western Svalbard, it also shows that such a warming was primarily induced by an excess flow of AW which stands as unprecedented over the last 3000 yr.