801 resultados para IRIDIUM ISOTOPES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole rock sulfur and oxygen isotope compositions of altered peridotites and gabbros from near the 15°20'N Fracture Zone on the Mid-Atlantic Ridge were analyzed to investigate hydrothermal alteration processes and test for a subsurface biosphere in oceanic basement. Three processes are identified. (1) High-temperature hydrothermal alteration (~250-350°C) at Sites 1268 and 1271 is characterized by 18O depletion (2.6-4.4 per mil), elevated sulfide-S, and high delta34S (up to ~2 wt% and 4.4-10.8 per mil). Fluids were derived from high-temperature (>350°C) reaction of seawater with gabbro at depth. These cores contain gabbroic rocks, suggesting that associated heat may influence serpentinization. (2) Low-temperature (<150°C) serpentinization at Sites 1272 and 1274 is characterized by elevated delta18O (up to 8.1 per mil), high sulfide-S (up to ~3000 ppm), and negative delta34S (to -32.1 per mil) that reflect microbial reduction of seawater sulfate. These holes penetrate faults at depth, suggesting links between faulting and temperatures of serpentinization. (3) Late low-temperature oxidation of sulfide minerals caused loss of sulfur from rocks close to the seafloor. Sulfate at all sites contains a component of oxidized sulfide minerals. Low delta34S of sulfate may result from kinetic isotope fractionation during oxidation or may indicate readily oxidized low-delta34S sulfide derived from microbial sulfate reduction. Results show that peridotite alteration may be commonly affected by fluids +/- heat derived from mafic intrusions and that microbial sulfate reduction is widespread in mantle exposed at the seafloor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystalline aggregates composed of calcium carbonate were recovered in the uppermost 50 m of Nankai Trough sediments during DSDP Leg 87A. These aggregates decomposed with time to masses of sandy calcite as determined by X-ray diffraction analysis. Petrographic and scanning electron microscopy revealed textures suggestive of a precursor phrase prior to calcite, and this precursor has been tentatively identified as the mineral ikaite, CaCO3*6H2O. Stable isotope data suggest a large component of terrigenous organic matter as the carbon source, consistent with the appearance of these aggregates in highly reducing pyritic sediments containing abundant plant remains. We propose that these nodules formed in euxinic basins on the upper part of the Trough slope under normal seafloor conditions of pressure and temperature. Calculated temperatures of formation of this phase are not unusually low. The specimens from Site 583 are the first reported occurrences of ikaite in active margin sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate aragonitic skeletons of the Caribbean sclerosponge Ceratoporella nicholsoni from Jamaica, 20 m below sea level (mbsl), and Pedro Bank, 125 mbsl. We use d18O and Sr/Ca ratios as temperature proxies to reconstruct the Caribbean mixed layer and thermocline temperature history since 1400 A.D. with a decadal time resolution. Our age models are based on U/Th dating and locating of the radiocarbon bomb spike. The modern temperature difference between the two sites is used to tentatively calibrate the C. nicholsoni Sr/Ca thermometer. The resulting calibration points to a temperature sensitivity of Sr/Ca in C. nicholsoni aragonite of about -0.1 mmol/mol/K. Our Sr/Ca records reveal a pronounced warming from the early 19th to the late 20th century, both at 20 and 125 mbsl. Two temperature minima in the shallow water record during the late 17th and early 19th century correspond to the Maunder and Dalton sunspot minima, respectively. Another major cooling occurred in the late 16th century and is not correlatable with a sunspot minimum. The temperature contrast between the two sites decreased from the 14th century to a minimum in the late 17th century and subsequently increased to modern values in the early 19th century. This is interpreted as a long-term deepening and subsequent shoaling of the Caribbean thermocline. The major trends of the Sr/Ca records are reproduced in both specimens but hardly reflected in the d18O records.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Talus deposits recovered from Site 536 show evidence of aragonite dissolution, secondary porosity development, and calcite cementation. Although freshwater diagenesis could account for the petrographic features of the altered talus deposits, it does not uniquely account for isotopic or trace-element characteristics. Also, the hydrologic setting required for freshwater alteration is not easily demonstrated for the Campeche Bank. A mixing-zone model does not account for the available trace-element data, but does require somewhat less drastic assumptions about the size of the freshwater lens. Although a seawater (bottom-water) alteration model requires no hydrologic difficulties, unusual circumstances are required to account for the geochemical characteristics of the talus deposits using this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 164 recovered a number of large solid gas hydrate from Sites 994, 996, and 997 on the Blake Ridge. Sites 994 and 997 samples, either nodular or thick massive pieces, were subjected to laboratory analysis and measurements to determine the structure, molecular and isotopic composition, thermal conductivity, and equilibrium dissociation conditions. X-ray computed tomography (CT) imagery, X-ray diffraction, nuclear magnetic resonance (NMR), and Raman spectroscopy have revealed that the gas hydrates recovered from the Blake Ridge are nearly 100% methane gas hydrate of Structure I, cubic with a lattice constant of a = 11.95 ± 0.05 angström, and a molar ratio of water to gas (hydration number) of 6.2. The d18O of water is 2.67 per mil to 3.51 per mil SMOW, which is 3.5-4.0 heavier than the ambient interstitial waters. The d13C and dD of methane are -66 per mil to -70 per mil and -201 per mil to -206 per mil, respectively, suggesting that the methane was generated through bacterial CO2 reduction. Thermal conductivity values of the Blake Ridge hydrates range from 0.3 to 0.5 W/(m K). Equilibrium dissociation experiments indicate that the three-phase equilibrium for the specimen is 3.27 MPa at 274.7 K. This is almost identical to that of synthetic pure methane hydrate in freshwater.