422 resultados para Dentigerous cyst
Resumo:
Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.
Resumo:
The Kap Mackenzie area on the outer coast of northeast Greenland was glaciated during the last glacial stage, and pre-Holocene shell material was brought to the area. Dating of marine shells indicates that deglaciation occurred in the earliest Holocene, before 10 800 cal. a BP. The marine limit is around 53 m a.s.l. In the wake of the deglaciation, a glaciomarine fauna characterized the area, but after c. one millennium a more species-rich marine fauna took over. This fauna included Mytilus edulis and Mysella sovaliki, which do not live in the region at present; the latter is new to the Holocene fauna of northeast Greenland. The oldest M. edulis sample is dated to c. 9500 cal. a BP, which is the earliest date for the species from the region and indicates that the Holocene thermal maximum began earlier in the region than previously documented. This is supported by driftwood dated to c. 9650 cal. a BP, which is the earliest driftwood date so far from northeastern Greenland and implies that the coastal area was at least partly free of sea ice in summer. As indicated by former studies, the Storegga tsunami hit the Kap Mackenzie area at c. 8100 cal. a BP. Loon Lake, at 18 m a.s.l., was isolated from the sea at c. 6200 cal. a BP, which is distinctly later than expected from existing relative sea-level curves for the region.
Resumo:
Surface sediments from the Laptev Sea and adjacent continental slope were studied for their composition of particulate organic matter (OM) by means of maceral analysis. The composition of macerals in sediments gives information about the environment, terrigenous supply from the hinterland, and marine OM. With reference to their biological sources, we distinguish between terrigenous and marine macerals. We found that the particulate OM in the surface sediments of the Laptev Sea is predominantly of terrigenous origin (mean: 78%). However, distinct variations exist when looking in detail. In the shelf area, sediments may contain up to 99% terrigenous OM. Freshwater algae occur directly north of the river mouths, reflecting the strong fluvial influence. Relatively high amounts of marine OM (20-40%) are restricted to the upper continental slope, the Vilkitsky Strait and west of the New Siberian Islands, explained by increased surface-water productivity due to increased fluvial nutrient supply, open-water conditions, and phytoplankton blooms at the ice-edge.
Resumo:
During the late Quaternary, both external and internal forcings have driven major climatic shifts from glacial to interglacial conditions. Nonlinear climatic steps characterized the transitions leading to these extrema, with intermediate excursions particularly well xpressed in the dynamics of the Northern Hemisphere cryosphere. Here we document the impact of these dynamics on the north-eastern North Atlantic Ocean, focussing on the 35-10 ka interval. Sea-surface salinities have been reconstructed quantitatively based on two independent methods from core MD95-2002, recovered from the northern Bay of Biscay adjacent to the axis of the Manche paleoriver outlet and thus in connection with proximal European ice sheets and glaciers. Quantitative reconstructions deriving from dinocyst and planktonic foraminiferal analyses have been combined within a robust chronology to assess the amplitude and timing of hydrological changes in this region. Our study evidences strong pulsed freshwater discharges which may have impacted the North Atlantic Meridional Overturning Circulation.
Resumo:
A detailed dinoflagellate cyst investigation of the almost continuous Middle Miocene through Pliocene of Ocean Drilling Program Hole 907A in the Iceland Sea has been conducted at 100-kyr resolution. The investigated section is well constrained by magnetostratigraphy, providing for the first time an independent temporal control on a succession of northern high-latitude dinoflagellate cyst bioevents. Based on the highest/lowest occurrences (HO/LO) and highest common occurrence (HCO) of 20 dinoflagellate cyst taxa and one acritarch species, 26 bioevents have been defined and compared with those recorded at selected DSDP, ODP, and IODP sites from the North Atlantic and contiguous seas, and in outcrops and boreholes from the onshore and offshore eastern U.S.A., and the North Sea and Mediterranean basins. Comparisons reveal near-synchronous HOs of the dinoflagellate cysts Batiacasphaera micropapillata (3.8-3.4 Ma, mid-Pliocene) and Reticulatosphaera actinocoronata (4.8-4.2 Ma, Lower Pliocene) across the Nordic Seas and North Atlantic, highlighting their value on a supraregional scale. This probably applies also to Hystrichosphaeropsis obscura (upper Tortonian), when excluding ODP Hole 907A where its sporadic upper stratigraphic range presumably relates to cooling in the early Tortonian. Over a broader time span within the upper Tortonian, the HO of Operculodinium piaseckii likely also permits correlation across the Nordic Seas and North Atlantic, and the HO of Labyrinthodinium truncatum appears useful in the Labrador and Nordic Seas. Biostratigraphic markers useful for regional rather than supraregional correlation are the HOs of Batiacasphaera hirsuta (c. 8.4 Ma, upper Tortonian) and Unipontidinium aquaeductus (c. 13.6-13.9 Ma, upper Langhian), the HCO of the acritarch Decahedrella martinheadii (c. 6.7-6.3 Ma, Messinian), and possibly the LO of Cerebrocysta irregulare sp. nov. (c. 13.8 Ma, uppermost Langhian) across the Nordic Seas. Since Habibacysta tectata, B. micropapillata, R. actinocoronata and D. martinheadii have been observed in the Arctic Ocean, they are potentially useful for high latitude correlations in the polar domain. The LOs of Habibacysta tectata and Unipontidinium aquaeductus suggest a mid- to late Langhian age (15.1-13.7 Ma) for deposits at the base of Hole 907A, thus providing new constraints on the age of basalts at the base of ODP Hole 907A. The stratigraphically important dinoflagellate cysts Cerebrocysta irregulare sp. nov., and Impagidinium elongatum sp. nov. are formally described.
Resumo:
The globally warm climate of the early Pliocene gradually cooled from 4 million years ago, synchronous with decreasing atmospheric CO2 concentrations. In contrast, palaeoceanographic records indicate that the Nordic Seas cooled during the earliest Pliocene, before global cooling. However, a lack of knowledge regarding the precise timing of Nordic Seas cooling has limited our understanding of the governing mechanisms. Here, using marine palynology, we show that cooling in the Nordic Seas was coincident with the first trans-Arctic migration of cool-water Pacific mollusks around 4.5 million years ago, and followed by the development of a modern-like Nordic Seas surface circulation. Nordic Seas cooling precedes global cooling by 500,000 years; as such, we propose that reconfiguration of the Bering Strait and Central American Seaway triggered the development of a modern circulation in the Nordic Seas, which is essential for North Atlantic Deep Water formation and a precursor for more widespread Greenland glaciation in the late Pliocene.