421 resultados para Carbon assimilation


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study of quantitative characteristics: phytoplankton photosynthesis (Ph), bacterial assimilation of CO2 (BA), total abundance of bacteria (TAB) and organic matter destruction (D) was carried out in waters the Tugur Bay (tidal level fluctuations up to 7 m) in July-August 1990. Calculations were made of integral indices in some parts: Ph -10-630, BA - 8-29, D - 280-1015 and of total primary production (TPP) - 18-652 mg C/(m2 day). According to obtained data and TAB the ecosystem of the Tugur Bay can be regarded as oligotrophic-mesotrophic one. Dependence on spatial and temporal inhomogeneity of primary productional processes on tide-ebb cycles was found. The role of bacterial relations in the ecosystem of the bay was shown. Portion of ?A in TPP varied from 4 to 44% reaching the maximum in desalinated water during the tide-ebb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. The plankton community is a key component driving biogeochemical fluxes, and the effect of increased CO2 on plankton is critical for understanding the ramifications of ocean acidification on global carbon fluxes. We determined the plankton community composition and measured primary production, respiration rates and carbon export (defined here as carbon sinking out of a shallow, coastal area) during an ocean acidification experiment. Mesocosms (~ 55 m3) were set up in the Baltic Sea with a gradient of CO2 levels initially ranging from ambient (~ 240 µatm), used as control, to high CO2 (up to ~ 1330 µatm). The phytoplankton community was dominated by dinoflagellates, diatoms, cyanobacteria and chlorophytes, and the zooplankton community by protozoans, heterotrophic dinoflagellates and cladocerans. The plankton community composition was relatively homogenous between treatments. Community respiration rates were lower at high CO2 levels. The carbon-normalized respiration was approximately 40 % lower in the high CO2 environment compared with the controls during the latter phase of the experiment. We did not, however, detect any effect of increased CO2 on primary production. This could be due to measurement uncertainty, as the measured total particular carbon (TPC) and combined results presented in this special issue suggest that the reduced respiration rate translated into higher net carbon fixation. The percent carbon derived from microscopy counts (both phyto- and zooplankton), of the measured total particular carbon (TPC) decreased from ~ 26 % at t0 to ~ 8 % at t31, probably driven by a shift towards smaller plankton (< 4 µm) not enumerated by microscopy. Our results suggest that reduced respiration lead to increased net carbon fixation at high CO2. However, the increased primary production did not translate into increased carbon export, and did consequently not work as a negative feedback mechanism for increasing atmospheric CO2 concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We calculate net community production (NCP) during summer 2005-2006 and spring 2006 in the Ross Sea using multiple approaches to determine the magnitude and consistency of rates. Water column carbon and nutrient inventories and surface ocean O2/Ar data are compared to satellite-derived primary productivity (PP) estimates and 14C uptake experiments. In spring, NCP was related to stratification proximal to upper ocean fronts. In summer, the most intense C drawdown was in shallow mixed layers affected by ice melt; depth-integrated C drawdown, however, increased with mixing depth. Delta O2/Ar-based methods, relying on gas exchange reconstructions, underestimate NCP due to seasonal variations in surface Delta O2/Ar and NCP rates. Mixed layer Delta O2/Ar requires approximately 60 days to reach steady state, starting from early spring. Additionally, cold temperatures prolong the sensitivity of gas exchange reconstructions to past NCP variability. Complex vertical structure, in addition to the seasonal cycle, affects interpretations of surface-based observations, including those made from satellites. During both spring and summer, substantial fractions of NCP were below the mixed layer. Satellite-derived estimates tended to overestimate PP relative to 14C-based estimates, most severely in locations of stronger upper water column stratification. Biases notwithstanding, NCP-PP comparisons indicated that community respiration was of similar magnitude to NCP. We observed that a substantial portion of NCP remained as suspended particulate matter in the upper water column, demonstrating a lag between production and export. Resolving the dynamic physical processes that structure variance in NCP and its fate will enhance the understanding of the carbon cycling in highly productive Antarctic environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parameters of provision of the phytoplankton community with inorganic nitrogen compounds in the western Black Sea in April 1993 are analyzed (specifically, dependence of rates of uptake of nitrates and ammonium by microplankton on substrate concentration, diurnal dynamics of assimilation of mineral nitrogen, values of f-ratios, and proportions of carbon and nitrogen fluxes). In most cases all the parameters of degree of phytoplankton provision with mineral nitrogen are shown to vary unidirectionally, both at the surface and in the photosynthesis zone. Individual areas of a relatively small region studied differed markedly in their level of provision of algae with inorganic nitrogen compounds - from complete saturation to high degree of limitation of phytoplankton development due to nitrogen deficiency in the environment. Obtained results allow to estimate provision of Black Sea phytoplankton with nitrogen in terms of limitation of rates of uptake of its inorganic compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fixation of dissolved inorganic carbon (DIC) by marine phytoplankton provides an important feedback mechanism on concentrations of CO2 in the atmosphere. As a consequence it is important to determine whether oceanic primary productivity is susceptible to changing atmospheric CO2 levels Among numerous other factors, the acquisition of DIC by microalgae particularly in the polar seas is projected to have a significant effect on future phytoplanktonic production and hence atmospheric CO2 concentrations. Using the isotopic disequilibrium technique the contribution of different carbon species (CO2 and bicarbonate) to the overall DIC uptake and the extent to which external Carbonic Anhydrase (eCA) plays a role in facilitating DIC uptake was estimated. Simultaneous uptake of CO2 and HCO3- was observed in all cases, but the proportions in which different DIC species contributed to carbon assimilation varied considerably between stations. Bicarbonate as well as CO2 could be the major DIC source for local phytoplankton assemblages. There was a positive correlation between the contribution of CO2 to total DIC uptake and ambient concentration of CO2 in seawater suggesting that Southern Ocean microalgae could increase the proportion of CO2 uptake under future high atmospheric CO2 levels. Results will be discussed in view of metabolic costs related to DIC acquisition of Southern Ocean phytoplankton.