674 resultados para Atlantic east of
Resumo:
Living (Rose Bengal stained) benthic foraminifera were collected with a multicorer from six stations between 2°N and 12°S off West Africa. The foraminiferal communities in the investigated area reflect the direct influence of different productivity regimes, and are characterized by spatially and seasonally varying upwelling activity. At five stations, foraminiferal abundance coincides well with the gradient of surface productivity. However, at one station off the Congo River, the influence of strong fresh water discharge is documented. Although this station lies directly in the center of an upwelling area, foraminiferal standing stocks are surprisingly low. It is suggested that the Congo discharge may induce a fractionation of the organic matter into small and light particles of low nutritional content, by contrast to the relatively fast-sinking aggregates found in the centers of high productivity areas. Quality and quantity of the organic matter seem to influence the distribution of microhabitats as well. The flux of organic carbon to the sea-floor controls the sequence of degradation of organic matter in sediment and the position of different redox fronts. The vertical foraminiferal stratification within sediment closely parallels the distribution of oxygen and nitrate in porewater, and reflects different nutritive strategies and adaptation to different types of organic matter. The epifauna and shallow infauna colonize oxygenated sediments where labile organic matter is available. The intermediate infauna (M. barleeanum) is linked to the zone of nitrate reduction in sediments where epifaunal and shallow infaunal species are not competitive anymore, and must feed on bacterial biomass or on metabolizable nutritious particles produced by bacterial degradation of more refractory organic matter. The deep infauna shows its maximum distribution in anoxic sediments, where no easily metabolizable organic matter is available.
Resumo:
Excess Thorium-230 (230Thxs) as a constant flux tracer is an essential tool for paleoceanographic studies, but its limitations for flux normalization are still a matter of debate. In regions of rapid sediment accumulation, it has been an open question if 230Thxs-normalized fluxes are biased by particle sorting effects during sediment redistribution. In order to study the sorting effect of sediment transport on 230Thxs, we analyzed the specific activity of 230Thxs in different particle size classes of carbonate-rich sediments from the South East Atlantic, and of opal-rich sediments from the Atlantic sector of the Southern Ocean. At both sites, we compare the 230Thxs distribution in neighboring high vs. low accumulation settings. Two grain-size fractionation methods are explored. We find that the 230Thxs distribution is strongly grain size dependent, and 50-90% of the total 230Thxs inventory is concentrated in fine material smaller than 10 µm, which is preferentially deposited at the high accumulation sites. This leads to an overestimation of the focusing factor Psi, and consequently to an underestimation of the vertical flux rate at such sites. The distribution of authigenic uranium indicates that fine organic-rich material has also been re-deposited from lateral sources. If the particle sorting effect is considered in the flux calculations, it reduces the estimated extent of sediment focusing. In order to assess the maximum effect of particle sorting on Psi, we present an extreme scenario, in which we assume a lateral sediment supply of only fine material (< 10 µm). In this case, the focusing factor of the opal-rich core would be reduced from Psi = 5.9 to Psi = 3.2. In a more likely scenario, allowing silt-sized material to be transported, Psi is reduced from 5.9 to 5.0 if particle sorting is taken into consideration. The bias introduced by particle sorting is most important for strongly focused sediments. Comparing 230Thxs-normalized mass fluxes biased by sorting effects with uncorrected mass fluxes, we suggest that 230Thxs-normalization is still a valid tool to correct for lateral sediment redistribution. However, differences in focusing factors between core locations have to be evaluated carefully, taking the grain size distributions into consideration.
Resumo:
In 1965-1966 R/V Mikhail Lomonosov conducted studies on concentrations of artificial radioactive products in the Northeast Atlantic. Concentration of strontium-90 at the end of 1965 and the beginning of 1966 was higher than the average level for the ocean and reached about 53 dpm/100 l in the surface layer. The most intense transport of artificial radioactive products out of the Irish Sea was detected in the northern and northeastern directions along the Hebrides and the Orkneys. In addition to radioactive fission products from nuclear weapons tests, radioactive wastes of atomic industrial facilities discharged into the ocean are an important source of radioactive contamination of some regions of the world ocean.
Resumo:
We report, numerically and in graphical form, meaured tritium concentrations from five hydrographic stations in the North Atlantic. Fairly homogeneous concentrations are observed in a surface layer typically 400 m deep. In the thermocline, concentrations decrease steadily down to the sigma-theta = 27.3 density horizon, and are more variable further down. The tritium in the lower part of the thermocline originates from the Subarctic Intermediate Water and the Mediterranean Water. There is a relative tritium maximum associated with the Mediterranean Water on the easternmost station of the section. In the deep water (sigma-theta > 27.8), concentrations east of the Midatlantic Ridge are close to the limit of detection down to 2500m, and undetectable further down, while west of the ridge tritium is found throughout the water column. The deep water tritium is associated with the deep-water advective cores of Arctic origin. The present tritium data can serve as northern boundary values in attempts to use tritium in studies of the North Atlantic main thermocline dynamics. The present data together with data from the literature point to a general division of the North Atlantic main thermocline into two layers separated by an isopycnal surface near sigma-theta = 27.3.
Resumo:
We use an X-ray fluorescence (XRF) Core Scanner to obtain records of elemental concentrations in sediment cores from Ocean Drilling Program (ODP) Leg 171B, Site 1052 (Blake Nose, Atlantic margin of northern Florida).This record spans the Middle to Late Eocene, as indicated by bio- and magnetostratigraphy, and displays cyclicity that can be attributed to the orbital forcing of a combination of climate, ocean circulation, or productivity. We use the XRF counts of iron and calcium as a proxy of the relative contribution from calcium carbonate and terrestrial material to construct a new composite depth record. This new composite depth record provides the basis to extend the astronomically calibrated geological time scale into the Middle Eocene and results in revised estimates for the age and duration of magnetochrons C16 through C18. In addition, we find an apparent change in the dominance of orbitally driven changes in obliquity and climatic precession at around 36.7 Ma on our new time scale. Long term amplitude modulation patterns of eccentricity and obliquity in the data do not seem to match the current astronomical model any more, suggesting the possibility of new constraints on astronomical calculations.