355 resultados para Amazon Fan
Resumo:
The interval between 488.2 and 513.7 m below seafloor at Deep Sea Drilling Project (DSDP) Site 615 is interpreted as a single carbonate gravity-flow deposit. The deposit has characteristics of both a debris flow and a high-density turbidity current. Comparison of the sedimentary constituents in 15 samples from this site with samples from 26 core tops from the upper West Florida continental slope and eastern Mississippi Fan shows many similarities. Shallow-water indicators, such as mollusk and echinoid fragments, occur in both suites of samples. The West Florida continental margin, therefore, is a potential provenance area. The Yucatan slope is also a possible source, but data from it are limited. The recognition of carbonate gravity-flow deposits intercalated within the Mississippi Fan refines our understanding of Pleistocene sedimentation within the Gulf basin. Deposition in the deep Gulf is dominated by the construction of the Mississippi Fan. However, this marine terrigenous depocenter is located between two large carbonate depocenters, the West Florida continental margin on the east and the Yucatan peninsula on the southwest. Periodically, the carbonate slope in these two regions fails, injecting carbonate gravity flows into the accreting terrigenous deep-sea fan.
Resumo:
A method is presented to study carbohydrate composition of marine objects involved into sedimento- and diagenesis (plankton, particulate matter, benthos, and bottom sediments). Analysis of the carbohydrates is based on consecutive separation of their fractions with different solvents (water, alkali, and acid). Ratios of carbohydrate fractions allows to evaluate lability of carbohydrate complexes. They are also usable as an indicators of biogeochemical processes in the ocean, as well of genesis and degree of transformation of organic matter in bottom sediments and nodules. Similarity in monosaccharide composition is shown for dissolved organic matter and aqueous and alkaline fractions of seston and particulate matter.
Resumo:
To enhance the limited information available about the palaeo-ecological significance of calcareous dinoflagellates, we have studied their lateral distribution in surface sediments of the equatorial and south Atlantic between 13°N and 36°S. Calcareous dinoflagellate cysts appear to be widely distributed throughout the studied area. In the surface sediments, concentrations (cyst per gram dry sediment) of the vegetative stage Thoracosphaera heimii are generally higher than that of the (presumably) calcareous resting cysts. Distribution patterns in surface sediments of Orthopithonella granifera (Fütterer) Keupp and Versteegh, Rhabdothorax spp. Kamptner., Sphaerodinella albatrosiana (Kamptner) Keupp and Versteegh S. albatrosiana praratabulated, Sphaerodinella tuberosa var. 1 (Kamptner) Keupp and Versteegh and S. tuberosa var. 2 and the ratios between these species have been compared with temperature, salinity, density and stratification gradients in the upper water column. Rhabdothorax spp. is characteristically present in sediments of more temperate regions characterized by high seasonality. Dinoflagellates producing these cysts are able to tolerate high nutrient concentrations, and mixing of the water column. S. albatrosiana is abundant in regions characterized by high sea surface temperatures and oligotrophic surface water conditions. In contrast, the distribution of S. tuberosa var. 2 is negatively related to temperature. The other cyst species did not show a characteristic pattern in relation to the studied environmental gradients. The ratio of Sphaerodinella tuberosa var. 2 to Orthopithonella granifera can be used for reconstructing the presence of stratification in the upper 50 m of the water column, whereas the ratios of S. tuberosa var. 2 to Sphaerodinella albatrosiana and of O. granifera to Rhabdothorax spp. might be used for palaeotemperature reconstructions. Calcareous dinoflagellate cysts are abundant in oligotrophic areas and may be useful for the reconstruction of palaeoenvironmental conditions.
Resumo:
Eight lithologic facies recognized in the Mississippi Fan sediments drilled during DSDP Leg 96 are defined on the basis of lithology, sedimentary structures, composition, and texture. Of these, the calcareous biogenic sediments are of minor importance, volumetrically, as compared with the dominant resedimented terrigenous facies. Clay, mud, and silt are the most abundant sediments at all the sites drilled, with some sand and gravel in the midfan channel fill and an abundance of sand on the lower fan. Facies distribution and vertical sequences reflect the importance of sediment type and supply in controlling fan development. Sea-level changes and diapiric activity have also played an important role. Clay and sand fraction mineralogy closely mirror the dominant sediment source, namely, the Mississippi River system and adjacent continental shelf. Local and regional variation in composition on the fan mostly reflects facies differences.
Resumo:
The state of consolidation of outer Bengal Fan deposits is closely related to their depositional history. Early Pleistocene sediments are underconsolidated, i.e., fabric strength is lower than under equilibrium with the present overburden stress, at depths greater than 60-80 mbsf. This may be due to rapid accumulation (>15-20 cm/k.y.) and overlying low-permeability (<10**-7 cm/s) deposits. The underlying Pliocene sediments are overconsolidated, i.e., fabric strength is higher than in equilibrium with the present overburden stress; at Sites 717 and 719 the sediments are slightly overconsolidated, whereas at Site 718 the overconsolidation is significant. Overconsolidation is explained by erosion that occurred during the early Pleistocene for which a stratigraphic gap was recorded in the drilled cores. The eroded section is estimated to be in the range of 10-40 m at Sites 717 and 719, respectively, and 130-150 m at Site 718. Below 250-300 mbsf the most sediments are normally consolidated. The amount of erosion seems to be related to block rotation and uplift due to intraplate deformation.