378 resultados para 171.1
Resumo:
A relatively well documented record of intermediate and late chlorophyll diagenesis in marine sediments now exists. Intermediate diagenetic stages include conversion of chlorins to DPEP-series porphyrins and subsequent chelation with nickel, vanadyl, and, in special cases, copper. Increasing thermal stress leads to etio-series generation and transalkylation (Baker, 1969; Baker and Smith, 1975; Baker et al., 1977; Palmer and Baker, in press). In contrast, the early transformations of clorophyll are still largely unknown. Very early diagenetic reactions must certainly include loss of magnesium, deesterification, decarboxylation, reduction of ring-conjugating groups, and finally, oxidative-aromatization of carbons 7 and 8 in ring IV to yield free-base porphyrins (Baker and Smith, 1973; Smith and Baker, 1974). Chlorins (7,8-dihydroporphyrins) are very difficult to isolate and identify, because of hydrocarbon impurities which absorb in the blue to violet region of the electromagnetic spectrum and which co-chromatograph with the pigments. Further complications possibly can arise from artifact formation during isolation. In the present study, twelve DSDP Leg 56 core samples, ranging in sub-bottom depth from 4 to 420 meters and in age from Pleistocene to middle Miocene, were analyzed for tetrapyrrole pigments. Chlorins, in concentrations ranging from about 4 to less than 0.002 µg/g sediment, wet weight, were the only tetrapyrroles found. A carotenoid (tetraterpene) was isolated from Section 434-1-3.
Resumo:
Deep sea manganese nodules from the Central Pacific Basin are mainly composed of 10Å manganite and d-MnO2 Two zones equivalent to the minerals are evidently distinguishable according to their optical properties. Microscopic and microprobe analyses revealed quite different chemical compositions and textnral characteristics of the two zones. These different feature of the two zones of nodules suggest the different conditions under which they were formed. Concentrations of 11 metal elements in the zones and inter-element relationships show that the 10Å manganite zone is a monomineralic oxide phase containing a large amount of manganese and minor amounts of useful metals, and that the d-MnO2 zone which is apparently homogeneous under the microscope is a mixture of three or more different minerals. The chemical characteristics of the two zones can explain the variation of bulk composition of deep sea manganese nodules and inter-element relationships previously reported, suggesting that the bulk compositions are attributable to the mixing of the 10Å manganite and d-MnO2 zones in various ratios. Characteristic morphology and surface structure of some types of nodules and their relationships to chemistry are also attribut able to the textural and chemical features of the above mentioned two phases. Synthesis of hydrated manganese oxides was carried out in terms of the formation of manganese minerals in the ocean. The primary product which is an equivalent to d-MnO2 was precipitated from Mn 2+ -bearing alkaline solution under oxigenated condition by air bubbling at one atmospheric pressure and room temperature. The primary product was converted to a l0Å manganite equivalent by contact with Ni 2+, Cu 2++ or CO2+ chloride solutions. This reaction caused the decrease of Ni2+, Cu2+ or CO2+ concentrations and the increase of Na+ concentration in the solution. The reaction also proceeded even in diluted solutions of nickel chloride and resulted in a complete removal of Ni2+ from the solution. Reaction products were exclusively 10Å manganite equivalents and their chemical compositions were very similar to those of 10Å manganite in manganese nodules. The maximum value of(Cu+Ni+Co)/Mn ratio of 10Å manganite zones in manganese nodules is 0.16, and the Ni/Mn ratio of synthetic 10Å manganite ranges from 0.15 to 0.18 with the average of 0.167.
Resumo:
Planktic foraminifers Neogloboquadrina pachyderma (sin.) from 87 eastern and central Arctic Ocean surface sediment samples were analyzed for stable oxygen and carbon isotope composition. Additional results from 52 stations were taken from the literature. The lateral distribution of delta18O (18O/16O) values in the Arctic Ocean reveals a pattern of roughly parallel, W-E stretching zones in the Eurasian Basin, each ~0.5 per mil wide on the delta18O scale. The low horizontal and vertical temperature variability in the Arctic halocline waters (0-100 m) suggests only little influence of temperature on the oxygen isotope distribution of N. pachyderma (sin.). The zone of maximum delta18O values of up to 3.8 per mil is situated in the southern Nansen Basin and relates to the tongue of saline (> 33%.) Atlantic waters entering the Arctic Ocean through the Fram Strait. delta18O values decrease both to the Barents Shelf and to the North Pole, in accordance with the decreasing salinities of the halocline waters. In the Nansen Basin, a strong N-S delta18O gradient is in contrast with a relatively low salinity change and suggests contributions from different freshwater sources, i.e. salinity reduction from sea ice meltwater in the south and from light isotope waters (meteoric precipitation and river-runoff) in the northern part of the basin. North of the Gakkel Ridge, delta18O and salinity gradients are in good accordance and suggest less influence of sea ice melting processes. The delta13C (13C/12C) values of N. pachyderma (sin.) from Arctic Ocean surface sediment samples are generally high (0.75-0.95 per mil). Lower values in the southern Eurasian Basin appear to be related to the intrusion of Atlantic waters. The high delta13C values are evidence for well ventilated surface waters. Because the perennial Arctic sea ice cover largely prevents atmosphere-ocean gas exchange, ventilation on the seasonally open shelves must be of major importance. Lack of delta13C gradients along the main routes of the ice drift from the Siberian shelves to the Fram Strait suggests that primary production (i.e. CO2 consumption) does probably not change the CO2 budget of the Arctic Ocean significantly.
Resumo:
Down water column traverses of core top weights for three planktonic species confirm Lohmann's (1995) relationship between foraminifera shell weight loss and bottom water carbonate ion content. However, they also suggest that the initial shell thickness varies with growth habitat and that the offset between bottom water and pore water carbonate ion concentration varies even on small space scales.
Resumo:
Campbell Plateau occupies a key position in the southwest Pacific sector of the Southern Ocean. The plateau confines and steers the Antarctic Circumpolar Current (ACC) along its flanks, isolating the Subantarctic plateau from cold polar waters. Oxygen and carbon isotope records from Campbell Plateau cores provide new records of water mass stratification for the past 130 kyr. During glacial climes, strengthening of the Subantarctic Front (SAF) caused waters over the plateau flanks to be deeply mixed and ~3°C cooler. Waters of the plateau interior remained stratified and isolated from the cold southern waters. In the west, waters cooled markedly (~4°C) owing to reduced entrainment of Tasman Sea water. Marked cooling also occurred north of Campbell Plateau under increased entrainment of polar water by a branch of the SAF. The ACC remained along the flanks of Campbell Plateau during the last interglacial, when interior waters were stratified and warmer by ~1°C than now.
Resumo:
This report of the GH76-1 cruise mainly includes the results of the on-board observations in the survey area of the medial-eastern part of Central Pacific Basin (5 degree -10 degree N, 170 degree -175 degree W) and partly of analytical work at the on-shore laboratory. In addition, the results of some on-board optical and geophysical works along the tracks of Japan-Ogasawara-survey area-Hawaii, are described in appendices. The GH76-1 cruise of the R/V Hakurei-maru was carried out from the 10th January to the 9th March, 1976 as the second phase field work of the Geological Survey of Japan five-year research program of study on the manganese nodule deposits of the Central Pacific Basin and also as a part of the National Research Institute for Pollution and Resources research program of technological study on the exploitation of deep sea mineral resources. The GSJ research program (F.Y. 1974-F.Y. 1978) aims at providing basic information on the manganese nodule distribution and their origin on the deep sea floor of the Central Pacific Basin bounded by the Marshall Ridge to the west, the Christmas Ridge to the east, and the Mid-Pacific Mountains to the north. The first phase of investigation was carried out during the GH74-5 cruise in the eastern part of the area (6 degree -10 degree 30'W, 164 degree 30'-171 degree 30'N)(Mizuno and Chujo, eds., 1975), and the present second phase covered an areas of 5 degree square, just west of the GH74-5 area.