394 resultados para geoscience
Resumo:
The observation that Greenland and Antarctic temperatures have followed a specific 'asymmetrical' pattern on millennial time-scales sets rigid constraints on any viable theory of abrupt climate change. The further observation that the very same asymmetry is also reflected in planktonic and benthic d18O measurements from the Northeast Atlantic has extended this constraint to include a specific response in the ocean. Here we present records of deep-water temperature, d18O and d13C variability from the Northeast Atlantic that help to shed light on the links between overturning circulation perturbations, sea-level variability and inter-hemispheric climate change on millennial time-scales. Results indicate that while deep-water temperatures in the Northeast Atlantic have tracked Greenland climate, the d18O signature of local deepwater (d18Odw) has varied in a manner more reminiscent of Antarctic temperature variability. The previously identified correspondence of Antarctic warm events with benthic d18O minima in the Northeast Atlantic is thus found to apply specifically to d18Odw minima, and to extend beyond Marine Isotope Stage 3 to the entirety of the last 50 ka. It is impossible to reconcile completely the Iberian Margin d18Odw record with existing reconstructions of millennial sea-level variability, leading to the conclusion that a significant portion of the d18Odw record must represent local hydrographic change. This is supported by benthic d13C measurements, which suggest the incursion during Greenland stadials of a colder, low-d18O and low-d13C water-mass, of presumed Antarctic origin. These observations confirm a one-to-one coupling of inter-hemispheric climate events with changes in the Atlantic overturning circulation, but fail to rule in or out a unique mechanism by which they were triggered.
Resumo:
Past changes in the freshwater balance of the surface North Atlantic Ocean are thought to have influenced the rate of deep-water formation, and consequently climate (Broecker and Denton, 1989, doi:10.1016/0016-7037(89)90123-3; Manabe and Stouffer, 1996; doi:10.1038/378165a0). Although water-mass proxies are generally consistent with an impact of freshwater input on meridional overturning circulation (Boyle and Keigwin, 1987, doi:10.1038/330035a0), there has been little dynamic evidence to support this linkage. Here we present a 25,000 year record of variations in sediment grain size from south of Iceland, which indicates vigorous bottom-water currents during both the last glacial maximum and the Holocene period. Together with reconstructions of North Atlantic water-mass distribution, vigorous bottom currents suggest a shorter residence time of northern-source waters during the last glacial maximum, relative to the Holocene period. The most significant reductions in flow strength occur during periods that have been associated with freshening of the surface North Atlantic. The short-term deglacial oscillations in bottom current strength are closely coupled to changes in Greenland air temperature, with a minimum during the Younger Dryas cold reversal and a maximum at the time of rapid warming at the onset of the Holocene. Our results support a strong connection between ocean circulation and rapid climate change.
Resumo:
Modeling natural phenomena from 3D information enhances our understanding of the environment. Dense 3D point clouds are increasingly used as highly detailed input datasets. In addition to the capturing techniques of point clouds with LiDAR, low-cost sensors have been released in the last few years providing access to new research fields and facilitating 3D data acquisition for a broader range of applications. This letter presents an analysis of different speleothem features using 3D point clouds acquired with the gaming device Microsoft® Kinect. We compare the Kinect sensor with terrestrial LiDAR reference measurements using the KinFu pipeline for capturing complete 3D objects (< 4m**3). The results demonstrate the suitability of the Kinect to capture flowstone walls and to derive morphometric parameters of cave features. Although the chosen capturing strategy (KinFu) reveals a high correlation (R2=0.92) of stalagmite morphometry along the vertical object axis, a systematic overestimation (22% for radii and 44% for volume) is found. The comparison of flowstone wall datasets predominantly shows low differences (mean of 1 mm with 7 mm standard deviation) of the order of the Kinect depth precision. For both objects the major differences occur at strongly varying and curved surface structures (e.g. with fine concave parts).