458 resultados para fluorescent minerals
Resumo:
We report U-Pb and 39Ar-40Ar measurements on plutonic rocks recovered from the Ocean Drilling Program (ODP) Legs 173 and 210. Drilling revealed continental crust (Sites 1067 and 1069) and exhumed mantle (Sites 1070 and 1068) along the Iberia margin and exhumed mantle (Site 1277) on the conjugate Newfoundland margin. Our data record a complex igneous and thermal history related to the transition from rifting to seafloor spreading. The results show that the rift-to-drift transition is marked by a stuttering start of MORB-type magmatic activity. Subsequent to initial alkaline magmatism, localized mid-oceanic ridge basalts (MORB) magmatism was again replaced by basin-wide alkaline events, caused by a low degree of decompression melting due to tectonic delocalization of deformation. Such "off-axis" magmatism might be a common process in (ultra-) slow oceanic spreading systems, where "magmatic" and "tectonic" spreading varies in both space and time.
Resumo:
Dolerites sampled from the lower sheeted dikes from Hole 504B during Ocean Drilling Program Legs 137 and 140, between 1562.4 and 2000.4 mbsf, were examined to document the mineralogy, petrography, and mineral parageneses associated with secondary alteration, to constrain the thermal history and composition of hydrothermal fluids. The main methods used were mineral chemical analyses by electron microprobe, X-ray diffraction, and cathodoluminescence microscopy. Temperatures of alteration were estimated on the basis of single and/or coexisting mineral chemistry. Permeability is important in controlling the type and extent of alteration in the studied dike section. At the meter-scale, intervals of weakly altered dolerites containing fresh olivine are interpreted as having experienced restricted exposure to hydrothermal fluids. At the centimeter- or millimeter-scale, alteration patches and extensively altered halos adjacent to veins reflect the permeability related to intergranular primary porosity and cracks. Most of the sheeted dike alteration in this case resulted from non-focused, pervasive fluid-rock interaction. This study confirms and extends the previous model for hydrothermal alteration at Hole 504B: hydrothermal alteration at the ridge axis followed by seawater recharge and off-axis alteration. The major new discoveries, all related to higher temperatures of alteration, are: (1) the presence of hydrothermal plagioclase (An80-95), (2) the presence of deuteric and/or hydrothermal diopside, and (3) the general increasing proportion of amphiboles, and particularly magnesio-hornblende with depth. We propose that the dolerites at Hole 504B were altered in five stages. Stage 1 occurred at high temperatures (less than 500° to 700°C) and involved late-magmatic formation of Na- and Ti-rich diopside, the hydrothermal formation of Na, Ti-poor diopside and the hydrothermal formation of an assemblage of An-rich plagioclase + hornblende. Stage 2 occurred at lower temperatures (250°-320°C) and is characterized by the appearance of actinolite, chlorite, chlorite-smectite, and/or talc (in low permeability zones) and albite. During Stage 3, quartz and epidote precipitated from evolved hydrothermal fluids at temperatures between 310° and 320°C. Anhydrite appeared during Stage 4 and likely precipitated directly from heated seawater. Stage 5 occurred off-axis at low temperatures (250°C) with laumontite and prehnite from evolved fluids.
Resumo:
During the drilling of Hole 603B on Deep Sea Drilling Project Leg 93, an unexpected series of sand-, silt-, and claystone turbidites was encountered from Cores 603B-45 through -76 (1224-1512 m sub-bottom depth). Complete and truncated Bouma sequences were observed, some indicating deposition by debris flows. Sand emplacement culminated with the deposition of a 30-m-thick, unconsolidated sand unit (Cores 603B-48 through -45). The purpose of this preliminary study is to determine the nature of the heavy mineral suites of this sediment in order to make tentative correlations with onshore equivalents. The heavy mineralogy of Lower Cretaceous North American mid-Atlantic coastal plain sediment has been extensively studied. This sediment is classified as the Potomac Group, which has a varied heavy mineral suite in its lower part (Patuxent Formation), and a limited suite in its upper part (Patapsco Formation). The results of this study reveal a similar trend in the heavy mineral suites of sediment in Hole 603B. Hauterivian through lower Barremian sediment has a heavy mineral suite that is dominated by zircon, apatite, and garnet, with minor amounts of staurolite and kyanite. Beginning in the mid-Barremian, a new source of sediment becomes dominant, one which supplies an epidote-rich heavy mineral suite. The results of the textural analyses show that average grain size of the light mineral fraction increases upsection, whereas sorting decreases. The epidote-rich source may have delivered sediment with a slightly coarser mean grain size. This sediment may represent a more direct continental input at times of maximum turbidite activity (mid-Barremian) and during deposition of the upper, unconsolidated sand unit.
Resumo:
The ~46-m.y.-old igneous basement cored during Leg 200 in the North Pacific represents one of the few cross sections of Pacific oceanic crust with a total penetration into basalt of >100 m. The rocks, emplaced during the Eocene at a fast-spreading rate (~14 cm/yr; full rate) are strongly differentiated tholeiitic basalts (ferrobasalts) with 7-4.5 wt% MgO, relatively high TiO2 (2-3.5 wt%), and total iron as Fe2O3 (9.1-16.8 wt%). The differentiated character of these lavas is related to unusually large amounts of crystallization differentiation of plagioclase, clinopyroxene, and olivine. The lithostratigraphy of the basement (cored to ~170 meters below seafloor) is divided into three units. The deepest unit (lithologic Unit 3), is a succession of lava flows of no more that a few meters thickness each. The intermediate unit (lithologic Unit 2) is represented by intermixed thin flows and pillows, whereas the shallowest unit (lithologic Unit 1), comprises two massive flows. The rocks range from aphyric to sparsely clinopyroxene-plagioclase-phyric (phenocryst content = <3 vol%) and from holocrystalline to hypohyaline. Chilled margins of pillow fragments show holohyaline to sparsely vitrophyric textures. Site 1224 oxide minerals present a type of alteration not previously seen, where titanomagnetite is only partially destroyed and the pure magnetite component is partially removed from the mineral, leaving, in the most extreme case, a nearly pure ulvöspinel residuum. As a result of this dissolution, iron, mainly in the oxidized state, is added to the circulating solvent fluids. This means that a considerable metal source can result from low-temperature reactions throughout the upper ocean crust. The coarsest-grained lithologic Unit 1 rocks have interstitial myrmekitic intergrowths of quartz and sodic plagioclase (~An12), roughly similar in mineralogy and bulk composition to tonalite/trondhjemite veinlets in abyssal gabbros from the southwest Indian Ocean and Hess Deep, eastern equatorial Pacific. Based on idiomorphic relationships and projections into the simplified Q-Ab-Or-H2O granite ternary system, the myrmekitic intergrowths formed at the same time as, or just after, the oxide minerals coprecipitated and at low water vapor pressure (~0.5 kbar). Their compositions correspond to SiO2-oligoclase intergrowths that are considerably less potassic than dacitic glasses that erupt, although rarely, along the East Pacific Rise or that have been produced experimentally by partial melting of gabbro. Based on the crystallization history and comparison to experimental data, the original interstitial siliceous liquids resulted from late-stage immiscible separation of siliceous and iron-rich liquids. The rare andesitic lavas found along the East Pacific Rise may be hybrid rocks formed by mixing of these immiscible siliceous melts with basaltic magma.
Resumo:
This study was aimed at reconstructing a sequence of events in the magmatic and metamorphic evolution of peridotites, gabbroids, and trondhjemites from internal oceanic complexes of the Ashadze and Logachev hydrothermal vent fields. Collections of plutonic rocks from Cruises 22 and 26 of R/V "Professor Logachev", Cruise 41 of R/V "Akademik Mstislav Keldysh", and from the Serpentine Russian-French expedition aboard R/V "Pourquoi pas?" were objects of this study. Data reported here suggest that the internal oceanic complexes of the Ashadze and Logachev fields formed via the same scenario in these two regions of the Mid-Atlantic Ridge. On the other hand, an analysis of petrological and geochemical characteristics of the rocks indicated that the internal oceanic complexes of the MAR axial zone between 12°58'N and 14°45'N show pronounced petrological and geochemical heterogeneity manifested in variations in degree of depletion of mantle residues and in Nd isotopic compositions of rocks from the gabbro-peridotite association. Trondhjemites from the Ashadze hydrothermal field can be considered as partial melting products of gabbroids under influence of hydrothermal fluids. It was supposed that presence of trondhjemites in internal oceanic complexes of MAR can be used as a marker for the highest temperature deep-rooted hydrothermal systems. Perhaps, the region of the MAR axial zone, in which petrologically and geochemically contrasting internal oceanic complexes are spatially superimposed, serves as an area for development of large hydrothermal clusters with considerable ore-forming potential.
(Table 4) Oxygen isotopic composition of minerals and bulk rocks from the Palenyi Island, Por'ya Bay
Resumo:
Zircons from the oldest magmatic and metasedimentary rocks in the Podolia domain of the Ukrainian shield were studied and dated by the U-Pb method on a NORDSIM secondary-ion mass spectrometer. Age of zircon cores in enderbite gneisses sampled in the Kazachii Yar and Odessa quarries on the opposite banks of the Yuzhnyi Bug River reaches 3790 Ma. Cores of terrigenous zircons in quartzites from the Odessa quarry as well as in garnet gneisses from the Zaval'e graphite quarry have age within 3650-3750 Ma. Zircon rims record two metamorphic events around 2750-2850 Ma and 1900-2000 Ma. Extremely low U content in zircons of the second age group indicates conditions of the granulite facies metamorphism in Paleoproterozoic within the Podolia domain. Measured data on orthorocks (enderbite-gneiss) and metasedimentary rocks unambiguously suggest existence of the ancient Paleoarchean crust in the Podolia (Dniester-Bug) domain of the Ukrainian shield. They contribute in our knowledge of scales of formation and geochemical features of the primordial crust.
Resumo:
The book deals with results of complex geological and geophysical studies in the Doldrums and Arkhangelsky Fracture Zones of the Central Atlantic. Description of the main features of bottom relief, sediments and crustal structure, geomagnetic field, composition of igneous and sedimentary rocks are given in the book. The authors made conclusions on tectonic delamination of the oceanic crust and existence of specific rock complexes forming non-spreading blocks
Resumo:
The monograph summarizes materials on geology and deep structure of the Central Atlantic fracture zones. These materials have been obtained during eight expeditions of R/V ''Akademik Nikolaj Strakhov''. The studies have been based on the integrated geological approach. As a result, many new tectonic, magmatic, metallogenic and historical-geological features of these phenomenal structures of the deep ocean have been revealed.
Resumo:
Sediments recovered from Site 765 can be divided into seven mineral associations, based on differences in clay mineralogy. These clay mineral associations correlate with the lithologic units and reflect the rift-to-drift history of the passive Australian margin. In general, the Lower to mid-Cretaceous sediments represent altered volcanic material and detrital aluminosilicates that were deposited during the early formation of the Argo Basin. The predominant clay mineral is randomly interstratified illite/smectite (I/S) that contains less than 10% illite layers. The transformation of smectite to illite is suggested by an increase in the percentage of illite layers in the basal sediments (from <10% to 40%) that corresponds to the silica transformation of opal-CT to quartz. This mixed-layered illite/smectite has an average composition of (K0.14 Na0.29 C0.07)(Al0.88 Mg0.43 Fe0.61 Ti0.06)(Si3.88 Al0.12)(O)10(OH)2. The highly smectitic composition of the I/S and its association with bentonite layers and zeolite minerals suggest that much of the I/S was derived from the alteration of volcanic material. The condensed middle to Upper Cretaceous sediments consist of palygorskite and detrital I/S that contains 30% to 60% illite layers. The condensed Paleogene sediments contain no palygorskite and are dominated by detrital clay minerals or by highly smectitic I/S associated with bentonite layers and zeolite minerals. The overlying, rapidly deposited Neogene clayey calcareous turbidites consist of three distinct clay mineral associations. Middle Miocene sediments contain palygorskite, kaolinite, and a tentatively identified mixed-layered illite/smectite/chlorite (I/S/C) or saponite. Upper Miocene sediments contain abundant sepiolite and kaolinite and lesser amounts of detrital I/S. Detrital I/S and kaolinite dominate the clay mineralogy of Pliocene and Pleistocene sediments. The fibrous, magnesium-rich clay minerals sepiolite and palygorskite appear to be authigenic and occur intimately associated with authigenic dolomite. The magnesium required to form these Mg-rich minerals was supplied by diffusion from the overlying seawater, and silica was supplied by the dissolution of associated biogenic silica.