550 resultados para WESTERN NORTH-ATLANTIC
Resumo:
Chemical analyses of North Atlantic D.S.D.P. (Deep Sea Drilling Project) sediments indicate that basal sediments generally contain higher concentrations of Fe, Mn, Mg, Pb, and Ni, and similar or lower concentrations of Ti, Al, Cr, Cu, Zn, and Li than the material overlying them. Partition studies on selected samples indicate that the enriched metals in the basal sediments are usually held in a fashion similar to that in basal sediments from the Pacific, other D.S.D.P. sediments, and modern North Atlantic ridge and non-ridge material. Although, on average, chemical differences between basal sediments of varying ages are apparent, normalization of the data indicates that the processes leading to metal enrichment on the crest of the Mid-Atlantic Ridge appear to have been approximately constant in intensity since Cretaceous times. In addition, the bulk composition of detrital sediments also appears to have been relatively constant over the same time period. Paleocene sediments from site 118 are, however, an exception to this rule, there apparently having been an increased detrital influx during this period. The bulk geochemistry, partitioning patterns, and mineralogy of sediments from D.S.D.P. 9A indicates that post-depositional migration of such elements as Mn, Ni, Cu, Zn, and Pb may have occurred. The basement encountered at the base of site 138 is thought to be a basaltic sill, but the overlying basal sediments are geochemically similar to other metalliferous basal sediments from the North Atlantic. These results, as well as those from site 114 where true oceanic basement was encountered, but where there was an estimated 7 m.y. hiatus between basaltic extrusion and basal sediment deposition, indicate that ridge-crest sediments are not necessarily deposited during active volcanism but can be formed after the volcanism has ceased. The predominant processes for metal enrichment in these deposits and those formed in association with other submarine volcanic features is a combination of shallow hydrothermal activity, submarine weathering of basalt, and the formation of ferromanganese oxides which can scavenge metals from seawater. In addition, it seems as though the formation of submarine metalliferous sediments is not restricted to active-ridge areas.
Resumo:
Recent deep-ocean exploration has revealed unexpectedly widespread and diverse coral ecosystems in deep water on continental shelves, slopes, seamounts, and ridge systems around the world. Origin and growth history of these cold-water coral mounds are poorly known, owing to a lack of complete stratigraphic sections through them. Here we show high-resolution oxygen isotope records of planktic foraminifers from the base to the top of Challenger Mound, southwest of Ireland, which was drilled during Integrated Ocean Drilling Program Expedition 307. Challenger Mound began to grow during isotope stage 92 (2.24 million years ago (Ma)), immediately after the onset of Northern Hemisphere glaciation and the initiation of modern stratification in the northeast Atlantic. Mound initiation was likely due to reintroduction of Mediterranean Outflow Water (MOW) and ensuing development of a density gradient with overlying northeastern Atlantic water (NEAW), where organic matter was prone to be stagnated and fueled the coral ecosystem. Coral growth continued for 11 glacial-interglacial cycles until isotopic stage 72 (1.82 Ma) with glacial siliciclastic input from the continental margin. After a long hiatus that separates the lower mound and the upper mound, coral growth restored for a short time in isotope stages 19-18 (0.8-0.7 Ma) in which sediments were either eroded or not deposited during a full glacial stage. The development pattern of the water mass interface between MOW and NEAW might have changed, because of the fluctuations of the MOW production which is responsible for the amplitude in ice volume oscillations from the low-amplitude 41 ka cycles for the lower mound to the high-amplitude 100 ka cycles for the upper mound. The average sedimentation and CaCO3 production rates of the lower mound were evaluated 27 cm/ka and 31.1 g/cm2/ka, respectively.
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Fossil shells of planktonic foraminifera serve as the prime source of information on past changes in surface ocean conditions. Because the population size of planktonic foraminifera species changes throughout the year, the signal preserved in fossil shells is biased towards the conditions when species production was at its maximum. The amplitude of the potential seasonal bias is a function of the magnitude of the seasonal cycle in production. Here we use a planktonic foraminifera model coupled to an ecosystem model to investigate to what degree seasonal variations in production of the species Neogloboquadrina pachyderma may affect paleoceanographic reconstructions during Heinrich Stadial 1 (~18-15 cal. ka B.P.) in the North Atlantic Ocean. The model implies that during Heinrich Stadial 1 the maximum seasonal production occurred later in the year compared to the Last Glacial Maximum (~21-19 cal. ka B.P.) and the pre-industrial era north of 30 ºN. A diagnosis of the model output indicates that this change reflects the sensitivity of the species to the seasonal cycle of sea-ice cover and food supply, which collectively lead to shifts in the modeled maximum production from the Last Glacial Maximum to Heinrich Stadial 1 by up to six months. Assuming equilibrium oxygen isotopic incorporation in the shells of N. pachyderma, the modeled changes in seasonality would result in an underestimation of the actual magnitude of the meltwater isotopic signal recorded by fossil assemblages of N. pachyderma wherever calcification is likely to take place.
Resumo:
The prosome length of copepods from each station was measured on board with a dissecting microscope equipped with an ocular micrometer. Individuals were placed in pre-weighed tin caps and dried for 48 h at 60°C on board. Dry samples were transferred to the AWI and weighed again. Copepod dry mass was then calculated as the difference between the empty weight and the weight of the tin cap containing one individual. The content of carbon (C) and nitrogen (N) then was analysed with a CN-analyser (EuroEA Element Analyser, Hekatech) with acetanilide as standard.
Resumo:
For the determination of water-soluble protein content of C. finmarchicus of the different stations the Qubit® Protein Assay Kit (Invitrogen) was used. Analysis was performed with extracts of 10 copepods. Working solution was prepared with Qubit® protein reagent and Qubit® protein buffer (1:200). 190 µL working solution was pipetted into each well of a micro plate and 10 µL of sample or Qubit® protein standard (0, 200 and 400 ng/µL) was added. Solutions were mixed and incubated for 15 min at room temperature. Measurements were conducted with a micro plate reader (TriStar LB 941, Berthold Technologies) at 485 nm excitation and 590 nm emission, using the software MikroWin2000 (Berthold Technologies).
Resumo:
In recent years a global increase in jellyfish (i.e. Cnidarians and Ctenophores) abundance and a rise in the recurrence of jellyfish outbreak events have been largely debated, but a general consensus on this matter has not been achieved yet. Within this debate, it has been generally recognized that there is a lack of reliable data that could be analyzed and compared to clarify whether indeed jellyfish are increasing throughout the world ocean as a consequence of anthropogenic impact and hydroclimatic variability. During the G.O. Sars cruise jellyfish were collected at different depths in the 0-1000m layer using a standard 1 m**2 Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS) (quantitative data), Harstad and macroplankton trawls (qualitative data). The comparison of records collected with different nets during the G.O. Sars transatlantic cruise shows that different sampling gears might provide very different information on jellyfish diversity. Indeed, the big trawls mostly collect relatively large scyphozoan and hydrozoan species such as Atolla, Pelagia, Praya, Vogtia, while small hydrozoans (e.g. Clytia, Gilia, Muggiaea) and early stages of ctenophora are only caught by the smaller nets.