350 resultados para T1-TOPOLOGIES
Resumo:
Pore water was collected from sediment cores from Holes 1202A and 1202D in the southern Okinawa Trough during Ocean Drilling Program (ODP) Leg 195. Because drilling at this site was completed only a few hours out of port during the end of the leg, whole rounds of sediment core 5 or 10 cm long were sealed and stored at ~3°C until pore water could be extracted from them during Leg 196, using a titanium squeezer designed by Manheim and Sayles (1974) and standard handling techniques (Shipboard Scientific Party, 2002, doi:10.2973/odp.proc.ir.195.103.2002).
Resumo:
In this report, I present trace element data for basement samples at Ocean Drilling Program (ODP) Site 1256. The samples analyzed represent a subset of the group ("pool") samples from ODP Leg 206, and these trace element data are part of a more comprehensive data suite for the same samples, with analyses of stable and radiogenic isotopes (e.g., Sr, Li, and O) in progress or recently completed that will be presented elsewhere. The trace element analyses were performed in the GeoAnalytical Lab at Washington State University. The following elements were analyzed: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ba, Th, Nb, Y, Hf, Ta, U, Pb, Rb, Cs, Sr, Sc, and Zr. Trace element data indicate that the igneous basement at Site 1256 is geochemically normal mid-ocean-ridge basalt. A massive ponded flow sampled in both Holes 1256C and 1256D is distinguished by higher abundances of rare earth elements (REE) and most of the other trace elements analyzed. One interval of highly altered basalt has significantly higher concentrations of Cs, Rb, and Ba and lower concentrations of Sr, Pb, Zr, Hf, Sc, and most REE than the samples of background alteration or halos. No correlation is obvious between trace element abundance and macroscopic type of alteration within the background alteration or halos.
Resumo:
Drilling a complete deep crustal section has been a primary yet elusive goal since the inception of scientific ocean drilling. In situ ocean crustal sections would contribute enormously to our understanding of the formation and subsequent evolution of the ocean crust, in particular the interplay between magmatic, hydrothermal, and tectonic processes. Ocean Drilling Program (ODP) Leg 206 was the first of a multileg project to drill an in situ crustal section that penetrated the gabbroic rocks of the Cocos plate (6°44.2'N, 91°56.1'W), which formed ~15 m.y. ago on the East Pacific Rise during a period of superfast spreading (>200 mm/yr) (Wilson, Teagle, Acton, et al., 2003, doi:10.2973/odp.proc.ir.206.2003). During Leg 206, the upper 500 m of basement was cored in Holes 1256C and 1256D with moderate to high recovery rates. The igneous rocks recovered are predominantly thin (10 cm to 3 m) basalt flows separated by chilled margins. There are also several massive flows (>3 m thick), although their abundance decreases with depth in Hole 1256D, as well as minor pillow basalts, hyaloclastites, and rare dikes. The lavas have been slightly (<10%) altered by low-temperature hydrothermal fluids, which resulted in pervasive dark gray background alteration and precipitation of saponite, pyrite, silica, celadonite, and calcium carbonate veins. Here we present a geochemical analysis of the CaCO3 recovered from cores. The compositions of ridge flank fluids within superfast spreading crust will be determined from these data, following the approach of Hart et al. (1994, doi:10.1029/93JB02035), Yatabe et al. (2000, doi:10.2973/odp.proc.sr.168.003.2000), and Coggon et al. (2004, doi:10.1016/S0012-821X(03)00697-6).
Resumo:
Anomalous concentrations of Ir have been found in upper Eocene sediments from Ocean Drilling Program (ODP) Hole 1090B. Clear and dark-colored spherules that are believed to be microtektites and clinopyroxene-bearing microkrystites, respectively, were found in the samples with highest Ir. The peak Ir concentration in Sample 177-1090B-30X-5,105-106 (954 pg/g) and the net Ir fluence (14 ng/cm**2) at this site are higher than at most other localities except for Caribbean site RC9-58. The Ir anomaly and impact debris are probably correlative with similar deposits found at ODP Site 689 on the Maude Rise and at other localities around the world.
Resumo:
Mid-Cretaceous sediments recovered during Ocean Drilling Program Leg 183 (Cores 183-1138A-69R to 73R) on the central Kerguelen Plateau have been analyzed palynologically and paleobotanically to determine the age of the strata and to reconstruct vegetational development and paleoecology. The lower strata (Cores 183-1138A-71R to 73R), a dark, organic-rich silty claystone with many wood fragments and fern remains (sedimentary Unit VI), certainly of terrestrial origin, directly overlies the volcanic basement, which is dated as latest Albian (~95 to 103 Ma) to earliest Cenomanian. The age of the terrestrial strata can be determined by sporomorphs as late Albian to earliest Cenomanian as well. This shows that parts of the central Kerguelen Plateau must have been subaerial at least until the late Albian and were covered with a diverse high-latitude flora, probably dense conifer forest with various fern taxa in the undergrowth. Early angiosperms are also present. The vegetational character represented in Unit VI did not change significantly through time. However, varying percentages of several sporomorph groups seem to show recurring abundance variations, which might possibly be cyclic, caused by Milankovitch-type cyclic events. Cores 183-1138A-67R through 69R, of open marine origin, contain medium- to high-diversity dinocyst assemblages. Based on previous stratigraphic zonation schemes, the ages of these strata range within the Heterosphaeridium Superzone, from the Palaeohystrichophora infusorioides Zone to the Conosphaeridium striatoconus Zone, which correlates to the latest Cenomanian to Coniacian.
Resumo:
Nutrient addition experiments were performed during the austral summer in the Amundsen Sea (Southern Ocean) to investigate the availability of organically bound iron (Fe) to the phytoplankton communities, as well as assess their response to Fe amendment. Changes in autotrophic biomass, pigment concentration, maximum photochemical efficiency of photosystem II, and nutrient concentration were recorded in response to the addition of dissolved free Fe (DFe) and Fe bound to different model ligands. Analysis of pigment concentrations indicated that the autotrophic community was dominated by the prymnesiophyte Phaeocystis antarctica throughout most of the Amundsen Sea, although diatoms dominated in two experiments conducted in the marginal ice zone. Few significant differences in bulk community biomass (particulate organic carbon, nitrogen, and chlorophyll a) were observed, relative to the controls, in treatments with Fe added alone or bound to the ligand phytic acid. In contrast, when Fe was bound to the ligand desferrioxamine B (DFB), decreases in the bulk biomass indices were observed. The concentration of the diatom accessory pigment fucoxanthin showed little response to Fe additions, while the concentration of the P. antarctica-specific pigment, 19'-hexanoyloxyfucoxanthin (19'-hex), decreased when Fe was added alone or bound to the model ligands. Lastly, differences in the nitrate:phosphate (NO3- :PO4**3-) utilization ratio were observed between the Fe-amended treatments, with Fe bound to DFB resulting in the lowest NO3- :PO4**3- uptake ratios (~ 10) and the remaining Fe treatments having higher NO3- :PO4**3- uptake ratios (~ 17). The data are discussed with respect to glacial inputs of Fe in the Amundsen Sea and the bioavailability of Fe. We suggest that the previously observed high NO3- :PO4**3- utilization ratio of P. antarctica is a consequence of its production of dissolved organic matter that acts as ligands and increases the bioavailability of Fe, thereby stimulating the uptake of NO3-.
Resumo:
The subduction of oceanic plates regulates crustal growth, influences arc volcanism, and refertilizes the mantle. Continental growth occurs by subduction of crustal material (seawater components, marine sediments, and basaltic crust). The geochemical and physical evolution of the Earth's crust depends, in large part, on the fate of subducted material at convergent margins (Armstrong, 1968, doi:10.1029/RG006i002p00175; Karig and Kay, 1981, 10.1098/rsta.1981.0108). The crustal material on the downgoing plate is recycled to various levels in the subduction zone. The recycling process that takes place in the "Subduction Factory" is difficult to observe directly but is clearly illuminated using chemical tracers. Von Huene and Scholl (1991, doi:10.1029/91RG00969) and Plank and Langmuir (1993, doi:10.1038/362739a0) preliminarily calculated a large flux of subducted materials. By mass balancing the chemical tracers and measuring the fractionations that occur between them, the Subduction Factory work and the effect on the Earth's evolution can be estimated. In order to elucidate this mass balance, Ocean Drilling Program Leg 185 drilled two deepwater shales into the oceanic crust situated in the Mariana-Izu Trenches and recovered core samples of incoming oceanic crust. The calculations of mass circulation in the subduction zone, however, did not take into account the mass transfer properties within subducted oceanic crust, although the dewatering fluid and diffused ions may play an important role in various activities such as seismogeneity, serpentine diapiring, and arc volcanism. Thus, this paper focuses on the quantitative measurements of the physical and mass transfer properties of subducted oceanic crust.
Resumo:
We report dissolved sulfide sulfur concentrations and the sulfur isotopic composition of dissolved sulfate and sulfide in pore waters from sediments collected during Ocean Drilling Program Leg 204. Porewater sulfate is depleted rapidly as the depth to the sulfate/methane interface (SMI) occurs between 4.5 and 11 meters below seafloor at flank and basin locations. Dissolved sulfide concentration reaches values as high as 11.3 mM in Hole 1251E. Otherwise, peak sulfide concentrations lie between 3.2 and 6.1 mM and occur immediately above the SMI. The sulfur isotopic composition of interstitial sulfate generally becomes enriched in 34S with increasing sediment depth. Peak d34S-SO4 values occur just above the SMI and reach up to 53.1 per mil Vienna Canyon Diablo Troilite (VCDT) in Hole 1247B. d34S-Sigma HS values generally parallel the trend of d34S-SO4 values but are more depleted in 34S relative to sulfate, with values from -12.7 per mil to 19.3 per mil VCDT. Curvilinear sulfate profiles and carbon isotopic composition of total dissolved carbon dioxide at flank and basin sites strongly suggest that sulfate depletion is controlled by oxidation of sedimentary organic matter, despite the presence of methane gas hydrates in underlying sediments. Preliminary data from sulfur species are consistent with this interpretation for Leg 204 sediments at sites not located on or near the crest of Hydrate Ridge.
Resumo:
Approximately quantitative values are presented on the mineral content of the clay and silt fractions of marine sediments from the Wadden Sea. Considering the extent of clay mineral transformation and neoformation in a marine environment, it is believed to be insignificant, because of the sea water and pore solutions of the sediments seem to represent - with the exception of a small Mg-surplus - a kind of equilibrium solution for three- and four-layer minerals, which neither favors a considerable base fixation nor base release. Therefore, illite neoformation during halmyrolysis or early diagenesis seems to be impossible, especially because of unfavourable relations of potassium to all other cations in the sea water. Obviously the neoformation of illite takes place only during later diagenetic stages. The processes of clay mineral neoformation in a marine environment are probably restricted to the formation of amorphous (Mg-)Fe-Si-particles which may be first steps in the formation of chamosites, chlorites or smectites.
Resumo:
We have preliminarily generated the downcore records of total organic carbon (TOC) content, total alkenone concentration, alkenone unsaturation index, and the estimated sea-surface temperature (SST) in the northern three sites (Sites 1175, 1176, and 1178) of the Muroto Transect, Nankai Trough. The TOC content will be used for the evaluation of the burial of organic matter, which plays a role in the generation of natural gas and the formation of gas hydrate in this region. The downcore records of alkenone SST will benefit studies for the paleoceanography of the northwestern Pacific. Because those sites are located in the main path of the Kuroshio Current, the records provide the temperature change of the Kuroshio water, which is an end-member water mass in the northwestern Pacific.
Resumo:
Three sites were cored on the landward slope of the Nankai margin of southwest Japan during Leg 190 of the Ocean Drilling Program. Sites 1175 and 1176 are located in a trench-slope basin that was constructed during the early Pleistocene (~1 Ma) by frontal offscraping of coarse-grained trench-wedge deposits. Rapid uplift elevated the substrate above the calcite compensation depth and rerouted a transverse canyon-channel system that had delivered most of the trench sediment during the late Pliocene (1.06-1.95 Ma). The basin's depth is now ~3000 to 3020 m below sea level. Clay-sized detritus (<2 µm) did not change significantly in composition during the transition from trench-floor to slope-basin environment. Relative mineral abundances for the two slope-basin sites average 36-37 wt% illite, 25 wt% smectite, 22-24 wt% chlorite, and 15-16 wt% quartz. Site 1178 is located higher up the landward slope at a water depth of 1741 m, ~70 km from the present-day deformation front. There is a pronounced discontinuity ~200 m below seafloor between muddy slope-apron deposits (Quaternary-late Miocene) and sandier trench-wedge deposits (late Miocene; 6.8-9.63 Ma). Clay minerals change downsection from an illite-chlorite assemblage (similar to Sites 1175 and 1176) to one that contains substantial amounts of smectite (average = 45 wt% of the clay-sized fraction; maximum = 76 wt%). Mixing in the water column homogenizes fine-grained suspended sediment eroded from the Izu-Bonin volcanic arc, the Izu-Honshu collision zone, and the Outer Zone of Kyushu and Shikoku, but the spatial balance among those contributors has shifted through time. Closure of the Central America Seaway at ~3 Ma was particularly important because it triggered intensification of the Kuroshio Current. With stronger and deeper flow of surface water toward the northeast, the flux of smectite from the Izu-Bonin volcanic arc was dampened and more detrital illite and chlorite were transported into the Shikoku-Nankai system from the Outer Zone of Japan.
Resumo:
When examined in their sedimentologic and stratigraphic context, ichnofabrics and component ichnofossils can help decipher paleoceanography and sea-level histories from marine deposits (Savrda, 1995, http://www.jstor.org/stable/3515095). Thus far, applications of ichnology in paleoceanographic investigations have been restricted to slowly deposited, predominantly biogenic sediments and/or strata deposited in oxygen-deficient, tectonically active basins. Moreover, ichnologic applications in sequence stratigraphic studies largely have been restricted to strata deposited in relatively shallow-water shelf or foreland basin settings. The limits of previous studies provided impetus for detailed postcruise examination of Quaternary deposits recovered at Ocean Drilling Program (ODP) Site 1073 on the New Jersey margin. These deposits provide the opportunity to assess the sedimentary and ichnofabric record of glacio-eustatic cycles in a passive continental slope setting characterized by relatively rapid accumulation of siliciclastic sediments in an area not far removed from the Laurentide ice margin. The primary purpose of this data report is to present basic sedimentologic and ichnologic observations made at the decimeter scale throughout the Quaternary sequence from Site 1073. Data analysis and interpretation in the context of climate and sea-level histories, as inferred from oxygen isotopic, palynologic, and seismic studies, are ongoing and will be presented in subsequent papers prepared for open literature (e.g., Savrda et al., in press).