767 resultados para MIXED-LAYER


Relevância:

60.00% 60.00%

Publicador:

Resumo:

X-ray diffraction analyses of the clay-sized fraction of sediments from the Nankai Trough and Shikoku Basin (Sites 1173, 1174, and 1177 of the Ocean Drilling Program) reveal spatial and temporal trends in clay minerals and diagenesis. More detrital smectite was transported into the Shikoku Basin during the early-middle Miocene than what we observe today, and smectite input decreased progressively through the late Miocene and Pliocene. Volcanic ash has been altered to dioctahedral smectite in the upper Shikoku Basin facies at Site 1173; the ash alteration front shifts upsection to the outer trench-wedge facies at Site 1174. At greater depths (lower Shikoku Basin facies), smectite alters to illite/smectite mixed-layer clay, but reaction progress is incomplete. Using ambient geothermal conditions, a kinetic model overpredicts the amount of illite in illite/smectite clays by 15%-20% at Site 1174. Numerical simulations come closer to observations if the concentration of potassium in pore water is reduced or the time of burial is shortened. Model results match X-ray diffraction results fairly well at Site 1173. The geothermal gradient at Site 1177 is substantially lower than at Sites 1173 and 1174; consequently, volcanic ash alters to smectite in lower Shikoku Basin deposits but smectite-illite diagenesis has not started. The absolute abundance of smectite in mudstones from Site 1177 is sufficient (30-60 wt%) to influence the strata's shear strength and hydrogeology as they subduct along the Ashizuri Transect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Planktonic foraminiferal assemblages and artificial neural network estimates of sea-surface temperature (SST) at ODP Site 1123 (41°47.2'S, 171°29.9'W; 3290 m deep), east of New Zealand, reveal a high-resolution history of glacial-interglacial (G-I) variability at the Subtropical Front (STF) for the last 1.2 million years, including the Mid-Pleistocene climate transition (MPT). Most G-I cycles of ~100 kyr duration have short periods of cold glacial and warm deglacial climate centred on glacial terminations, followed by long temperate interglacial periods. During glacial-deglacial transitions, maximum abundances of subantarctic and subtropical taxa coincide with SST minima and maxima, and lead ice volume by up to 8 kyrs. Such relationships reflect the competing influence of subantarctic and subtropical surface inflows during glacial and deglacial periods, respectively, suggesting alternate polar and tropical forcing of southern mid-latitude ocean climate. The lead of SSTs and subtropical inflow over ice volume points to tropical forcing of southern mid-latitude ocean-climate during deglacial warming. This contrasts with the established hypothesis that southern hemisphere ocean climate is driven by the influence of continental glaciations. Based on wholesale changes in subantarctic and subtropical faunas, the last 1.2 million years are subdivided into 4-distinct periods of ocean climate. 1) The pre-MPT (1185-870 ka) has high amplitude 41-kyr fluctuations in SST, superimposed on a general cooling trend and heightened productivity, reflecting long-term strengthening of subantarctic inflow under an invigorated Antarctic Circumpolar Current. 2) The early MPT (870-620 ka) is marked by abrupt warming during MIS 21, followed by a period of unstable periodicities within the 40-100 kyr orbital bands, decreasing SST amplitudes, and long intervals of temperate interglacial climate punctuated by short glacial and deglacial phases, reflecting lower meridional temperature gradients. 3) The late MPT (620-435 ka) encompasses an abrupt decrease in the subantarctic inflow during MIS 15, followed by a period of warm equable climate. Poorly defined, low amplitude G-I variations in SSTs during this interval are consistent with a relatively stable STF and evenly balanced subantarctic and subtropical inflows, possibly in response to smaller, less dynamic polar icesheets. 4) The post-MPT (435-0 ka) is marked by a major climatic deterioration during MIS 12, and a return to higher amplitude 100 kyr-frequency SST variations, superimposed on a long term trend towards cooler SSTs and increased mixed-layer productivity as the subantarctic inflow strengthened and polar icesheets expanded.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Altogether 513 samples from sediments of Cretaceous to Pleistocene age from DSDP Legs 56 and 57 were examined by x-ray methods. The main constituents are clay minerals, quartz, feldspar, opaline silica, and volcanic glass. The sediment composition reflects the position of the sites in relation to the main source area, the Japanese Island Arc. For example, relatively coarse-grained material rich in quartz and feldspar was deposited closest to the islands, whereas finer-grained material rich in clay minerals (mainly smectite and illite, with lesser amounts of kaolinite and chlorite) was deposited farther seaward. Vertical fluctuations in the composition of the sediments show the same trend in all sites and are caused mainly by a fluctuating contribution of biogenic silica with time. A trend reversal in the chlorite/kaolinite ratio at Site 438 supports the conclusion that the subsidence of the Oyashio ancient landmass took place during the middle Miocene. That ratio also indicates a northwest drift in the position of Site 436 by sea floor spreading. Oscillations of the illite/smectite ratio during the Pleistocene at Site 436 show the variations of climate during this period. During early diagenesis potassium is fixed in smectite. With increasing depth of burial a smectite-illite mixed layer is formed, with increasing illite layering. At Sites 434, 440, and 441, stepwise changes confirm intensive tectonic process at the midslope terrace and the lower inner slope of the Japan Trench.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Little is known regarding the distribution of volatile halogenated organic compounds (halocarbons) in Antarctic waters, and their relation to biophysical variables. During the austral summer (December to January) in 2007-08 halocarbon and pigment concentrations were measured in the Amundsen (100-130ºW) and Ross Sea (158ºW- 160ºE). In addition, halocarbons were determined in air, snow and sea ice. The distribution of halocarbons was influenced to a large extent by sea ice, and to a much lesser extent by pelagic biota. Concentrations of naturally produced halocarbons were elevated in the surface mixed layer in ice covered areas compared to open waters in polynyas and in the bottom waters of the Ross Sea. Higher concentrations of halocarbons were also found in sea ice brine compared to the surface waters. Incubations of snow revealed an additional source of halocarbons. The distribution of halocarbons also varied considerably between the Amundsen and Ross Seas, mainly due to the different oceanographic settings. For iodinated compounds, weak correlations were found with the presence of pigments indicative of Phaeocystis, mainly in the Ross Sea. Saturation anomalies for the surface water and brine (in sea ice) were determined for the two indicator halocarbons bromoform and chloriodomethane. For bromoform, the surface water anomalies varied between -83 and 11%, whereas chloroiodomethane anomalies varied between -6 and 1,200%. The saturation anomalies for brine varied between -56 to 120% for bromoform and 91 to 22,000% for chloroiodomethane, indicating that sea ice could be a possible source both to the atmosphere and the surface waters. Polar waters can have a substantial impact on global halocarbon budgets and need to be included in large-scale assessments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Redfield stoichiometry has proved a robust paradigm for the understanding of biological production and export in the ocean on a long-term and a large-scale basis. However, deviations of carbon and nitrogen uptake ratios from the Redfield ratio have been reported. A comprehensive data set including all carbon and nitrogen pools relevant to biological production in the surface ocean (DIC, DIN, DOC, DON, POC, PON) was used to calculate seasonal new production based on carbon and nitrogen uptake in summer along 20°W in the northeast Atlantic Ocean. The 20°W transect between 30 and 60°N covers different trophic states and seasonal stages of the productive surface layer, including early bloom, bloom, post-bloom and non-bloom situations. The spatial pattern has elements of a seasonal progression. We also calculated exported production, i.e., that part of seasonal new production not accumulated in particulate and dissolved pools, again separately for carbon and nitrogen. The pairs of estimates of 'seasonal new production' and 'exported production' allowed us to calculate the C : N ratios of these quantities. While suspended particulate matter in the mixed layer largely conforms to Redfield stoichiometry, marked deviations were observed in carbon and nitrogen uptake and export with progressing season or nutrient depletion. The spring system was characterized by nitrogen overconsumption and the oligotrophic summer system by a marked carbon overconsumption. The C : N ratios of seasonal new as well as exported production increase from early bloom values of 5-6 to values of 10-16 in the post-bloom/oligotrophic system. The summertime accumulation of nitrogen-poor dissolved organic matter can explain only part of this shift.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iron solubility measurements in the Mauritanian upwelling and the adjacent Open Ocean of the Tropical Atlantic show for all stations lower values in the surface mixed layer than at depth below the pycnocline. We attribute this distribution to a combination of loss terms, chiefly photo-oxidation of organic ligands in the surface, and supply terms, predominantly from the release of ligands from the decomposition of organic matter. Significant correlations with pH, oxygen and phosphate for all samples below the surface mixed layer indicate that biogenic remineralisation of organic matter results in the release of iron binding ligands into the dissolved phase. The comparison of the cFeS/PO4**3- ratio with other published data from intermediate and deep waters in the Pacific suggests an enhanced release of iron chelators in the more productive Mauritanian upwelling zone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clay mineral assemblages for the last 10 m.y. are described for Site 823, at 16°S in the Queensland Trough, to the northeast of Australia. Largely unaffected by diagenetic influences, these mostly express the evolution of northeastern Australian continental environments during the late Neogene: (1) beginning during the late Miocene at about 7.0 Ma is an increase of illite derived from rocky substrates at the expense of smectite from deeply weathered soils; this increase was the result of increasing aridity in the Australian interior and globally cooler temperatures, associated with increases in Antarctic glaciation; (2) concomitant and further increases of kaolinite fluxes to the Queensland Trough during the late Miocene-early Pliocene largely reflect an increase in rainfall in northeastern Australia; (3) increases in both soil- and rock-derived minerals probably intensified as a result of late Neogene uplift of the eastern highlands; (4) clay-mineral associations during the Pliocene and Pleistocene display minor variations only and probably resulted in part from differential settling and sea-level changes; (5) similar trends of clay-mineral variations occur at both ODP Site 823 and DSDP Site 588 (Lord Howe Rise). Less abundant kaolinite relative to illite at Site 588 nevertheless suggests a southward decrease of continental humidity and/or of the eastern highlands uplift; (6) influences of global climate and oceanic and atmospheric circulations on clay-mineral associations dominated during the late Miocene and were progressively replaced by influences of more regional environmental variations during the Pliocene and especially the Pleistocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We sampled the upper water column for living planktic foraminifera along the SW-African continental margin. The species Globorotalia inflata strongly dominates the foraminiferal assemblages with an overall relative abundance of 70-90%. The shell delta18O and delta13C values of G. inflata were measured and compared to the predicted oxygen isotope equilibrium values (delta18O(eq)) and to the carbon isotope composition of the total dissolved inorganic carbon (delta13C(DIC)) of seawater. The delta18O of G. inflata reflects the general gradient observed in the predicted delta18O(eq) profile, while the delta13C of G. inflata shows almost no variation with depth and the reflection of the delta13C(DIC) in the foraminiferal shell seems to be covered by other effects. We found that offsets between delta18O(shell) and predicted delta18O(eq) in the surface mixed layer do not correlate to changes in seawater [CO3[2-]]. To calculate an isotopic mass balance of depth integrated growth, we used the oxygen isotope composition of G. inflata to estimate the fraction of the total shell mass that is grown within each plankton tow depth interval of the upper 500 m of the water column. This approach allows us to calculate the DELTA delta13C(interval added-DIC); i.e. the isotopic composition of calcite that was grown within a given depth interval. Our results consistently show that the DELTA delta13C(IA-DIC) correlates negatively with in situ measured [CO3[2-]] of the ambient water. Using this approach, we found DELTA delta13C(IA-DIC)/[CO3[2-]] slopes for G. inflata in the large size fraction (250-355 µm) of -0.013 per mil to 0.015 per mil (µmol/kg)**-1 and of -0.013 per mil to 0.017 per mil (µmol/kg)**-1 for the smaller specimens (150-250 µm). These slopes are in the range of those found for other non-symbiotic species, such as Globigerina bulloides, from laboratory culture experiments. Since the DELTA delta13C(IA-DIC)/[CO3[2-]] slopes from our field data are nearly identical to the slopes established from laboratory culture experiments we assume that the influence of other effects, such as temperature, are negligibly small. If we correct the delta13C values of G. inflata for a carbonate ion effect, the delta13C(shell) and delta13C(DIC) are correlated with an average offset of 2.11.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present data set provides contextual environmental data for samples from the Tara Oceans Expedition (2009-2013) that were selected for publication in a special issue of the SCIENCE journal (see related references below). The data set provides calculated averages of mesaurements made at the sampling location and depth, calculated averages from climatologies (AMODIS, VGPM) and satellite products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The characteristics of a global set-up of the Finite-Element Sea-Ice Ocean Model under forcing of the period 1958-2004 are presented. The model set-up is designed to study the variability in the deep-water mass formation areas and was therefore regionally better resolved in the deep-water formation areas in the Labrador Sea, Greenland Sea, Weddell Sea and Ross Sea. The sea-ice model reproduces realistic sea-ice distributions and variabilities in the sea-ice extent of both hemispheres as well as sea-ice transport that compares well with observational data. Based on a comparison between model and ocean weather ship data in the North Atlantic, we observe that the vertical structure is well captured in areas with a high resolution. In our model set-up, we are able to simulate decadal ocean variability including several salinity anomaly events and corresponding fingerprint in the vertical hydrography. The ocean state of the model set-up features pronounced variability in the Atlantic Meridional Overturning Circulation as well as the associated mixed layer depth pattern in the North Atlantic deep-water formation areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Upwelling velocities w in the equatorial band are too small to be directly observed. Here, we apply a recently proposed indirect method, using the observed helium isotope (3He or 4He) disequilibria in the mixed layer. The helium data were sampled from three cruises in the eastern tropical Atlantic in September 2005 and June/July 2006. A one-dimensional two-box model was applied, where the helium air-sea gas exchange is balanced by upwelling from 3He-rich water below the mixed layer and by vertical mixing. The mixing coefficients Kv were estimated from microstructure measurements, and on two of the cruises, Kv exceeded 1 x 10**-4 m**2/s, making the vertical mixing term of the same order of magnitude as the gas exchange and the upwelling term. In total, helium disequilibrium was observed on 54 stations. Of the calculated upwelling velocities, 48% were smaller than 1.0 x 10**-5 m/s, 19% were between 1.0 and 2.0 x 10**-5 m/s, 22% were between 2.0 and 4.0 x 10**-5 m/s, and on 11% of upwelling velocities exceeded this limit. The highest upwelling velocities were found in late June 2006. Meridional upwelling distribution indicated an equatorial asymmetry with higher vertical velocities between the equator and 1° to 2° south compared to north of the equator, particularly at 10°W. Associated heat flux into the mixed layer could be as high as 138 W/m**2, but this depends strongly on the chosen depths where the upwelled water comes from. By combining upwelling velocities with sea surface temperature and productivity distributions, a mean monthly equatorial upwelling rate of 19 Sv was estimated for June 2006 and a biweekly mean of 24 Sv was estimated for September 2005.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate responses and changes in marine environments during the last deglaciation have been controversial and few paleoceanographic data are available from the tropical South Pacific, though this region is crucial in the investigations of ocean-atmosphere interactions. Integrated Ocean Drilling Program Expedition 310 was conducted to establish the time course of the postglacial sea-level rise at Tahiti in the South Pacific. A principal objective of this expedition was to examine the variation of marine environments during the last deglaciation. As fossil Porites coral is ideal for assessing past marine environments, we selected only Porites specimens from the many coral specimens retrieved, examined them by XRD, and dated them by the 14C method. In all, we obtained 17 pristine Porites specimens composed of only aragonite with ages from 15 to 9 ka. Then, we measured Mg/Ca, Ba/Ca, and U/Ca ratios and Cd contents as proxies for upwelling and sea surface temperature. Higher Ba/Ca ratios and Cd content together with lower reconstructed SSTs using U/Ca ratios in the coral specimens between 12.6 and 9.8 cal ka compared to around 15 cal ka suggest that upwelling and/or entrainment of subsurface water into mixed layer was enhanced around Tahiti during this period. This finding is consistent with previous reports and supports the idea that the South Pacific was characterized by La Niña-like conditions at least from 12.6 to 9.8 cal ka.