644 resultados para Geology, Geochemistry and Mineralogy.


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leg 140 of the Ocean Drilling Program deepened Hole 504B to a total depth of 2000.4 m below seafloor (mbsf), making it the deepest hole drilled into ocean crust. Site 504, south of the Costa Rica Rift, is considered the most important in-situ reference section for the structure of shallow ocean crust. We present the results of studies of magnetic mineralogy and magnetic properties of Hole 504B upper crustal rocks recovered during Legs 137 and 140. Results from this sample set are consistent with those discussed in Pariso et al. (this volume) from Legs 111, 137, and 140. Coercivity (Hc) ranges from 5.3 to 27.7 mT (mean 12 mT), coercivity of remanence (HCR) ranges from 13.3 to 50.6 mT (mean 26 mT), and the ratio HCR/HC ranges from 1.6 to 3.19 (mean 2.13). Saturation magnetization (JS) ranges from 0.03 to 5.94 * 10**-6 Am**2, (mean 2.52 * 10**-6 Am**2), saturation remanence (JR) ranges from 0.01 to 0.58 * 10**-6 Am2 (mean 0.37 * 10**-6 Am**2), and the ratio JR/JS ranges from 0.08 to 0.29 (mean 0.16), consistent with pseudo-single-domain behavior. Natural remanent magnetization (NRM) intensity ranges from 0.029 to 7.18 A/m (mean 2.95 A/m), whereas RM10 intensity varies only from 0.006 to 4.8 A/m and has a mean of only 1.02 A/m. Anhysteretic remanent magnetization (ARM) intensity ranges from 0.04 to 6.0 A/m, with a mean of 2.46 A/m, and isothermal remanent magnetization (IRM) intensity ranges from 0.5 to 1683 A/m, with a mean of 430.7 A/m. Volume susceptibility ranges from 0.0003 to 0.043 SI (mean 0.011 SI). In all samples examined, high-temperature oxidation of primary titanomagnetite has produced lamellae or pods of magnetite and ilmenite. Hydrothermal alteration has further altered the minerals in some samples to a mixture of magnetite, ilmenite, titanite, and a high-titanium mineral (either rutile or anatase). Electron microprobe analyses show that magnetite lamellae are enriched in the trivalent oxides Cr2O3, Al2O3, and V2O5, whereas divalent oxides (MnO and MgO) are concentrated in ilmenite lamellae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volcanic ash was recovered from lower Aptian to Albian deposits from DSDP Sites 463, 465, and 466; pelagic clay of the upper Pleistocene to Upper Cretaceous was recovered mainly from Site 464, with minor amounts at Sites 465 and 466. We present X-ray-mineralogy data on pelagic clay and altered volcanic ash recovered from the four Leg 62 sites. In addition, two ash samples from Sites 463 and 465, a pelagic clay from Site 464, and a clay vein from the basaltic basement at Site 464 each were analyzed for major, minor, and trace elements. Our purpose is to describe the mineralogy and chemistry of altered ash and pelagic clays, to determine the sources of their parent material, and to delineate the diagenetic history of these clay-rich deposits. Correlation of chemistry and mineralogy of ash and pelagic clay with volcanic rocks suspected to be their parent material is not always straightforward, because weathering and diagenetic alteration caused depletion or enrichment of many elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Hole 735B, located on Atlantis Bank on the Southwest Indian Ridge, penetrated 1508 meters below seafloor with an average recovery of 87%, providing a nearly continuous sample of a significant part of oceanic Layer 3. Based on variations in texture and mineralogy, 12 major lithologic units are recognized in the section, ranging from 39.5 to 354 m thick. The principal lithologies include troctolite, troctolitic gabbro, olivine gabbro and microgabbro, gabbro, gabbronorite and Fe-Ti oxide gabbro, gabbronorite, and microgabbro. Highly deformed mylonites, cataclasites, and amphibole gneisses are locally present, as are small quantities of pyroxenite, anorthositic gabbro, and trondhjemite. Downhole variations in mineral composition, particularly for olivine and clinopyroxene, show a number of cyclic variations. Plagioclase compositions show the widest variations and correspond to different degrees of deformation and alteration as well as primary processes. Downhole chemical variations correspond reasonably well with variations in mineral compositions. Iron and titanium mainly reflect the presence of Fe-Ti oxide gabbros but show some cyclical variations in the lower part of the core where oxide gabbros are sparse. CaO is highly variable but shows a small but consistent increase downhole. MgO is more uniform than CaO and shows a very small downward increase. Sulfur and CO2 contents are generally low, but S shows significant enrichment in lithologic Unit IV, which consists of Fe-Ti oxide gabbro, reflecting the presence of sulfide minerals in the sequence. The lithologic, mineralogical, and geochemical data provided here will allow detailed comparisons with ophiolite sections as well as sections of in situ ocean crust drilled in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.