342 resultados para East-Weastwards increasing collision ages
Resumo:
BACKGROUND: Concentrations of brominated flame retardants (BFRs) are reported to increase in marine ecosystems. OBJECTIVES: Characterize exposure to BFRs in animals from different trophic levels in North-East Atlantic coastal marine ecosystems along a latitudinal gradient from southern Norway to Spitsbergen, Svalbard, in the Arctic. Calanoid species were collected from the Oslofjord (59°N), Froan (64°N), and Spitsbergen (> 78°N); Atlantic cod (Gadus morhua) from the Oslofjord and Froan; polar cod (Boreogadus saida) from Bear Island (74°N) and Spitsbergen; harbor seal (Phoca vitulina) from the Oslofjord, Froan, and Spitsbergen; and ringed seal (Phoca vitulina) from Spitsbergen. Eggs of common tern (Sterna hirundo) were collected from the Oslofjord, and eggs of arctic terns (Sterna paradisaea) from Froan and Spitsbergen. RESULTS: Levels of polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCD) generally decreased as a function of increasing latitude, reflecting distance from release sources. The clear latitudinal decrease in levels of BFRs was not pronounced in the two tern species, most likely because they are exposed during migration. The decabrominated compound BDE-209 was detected in animals from all three ecosystems, and the highest levels were found in arctic tern eggs from Spitsbergen. HBCD was found in animals from all trophic levels, except for in calanoids at Froan and Spitsbergen. CONCLUSIONS: Even though the levels of PBDEs and HBCD are generally low in North-East Atlantic coastal marine ecosystems, there are concerns about the relatively high presence of BDE-209 and HBCD.
Resumo:
Concentrations of Cd, Pb, Zn, Cu, Co, Ni, Fe, and Al203, water content, the amounts of organic carbon, the ratio of 13C/12C and the 14C-activity of the organic fraction were determined with sediment depth from a 34 cm long box-core from the Bornholm Basin (Baltic Sea). The average sedimentation rate was 2.4 mm/yr. The upper portion of the core contained increasing amounts of 14C-inactive organic carbon, and above 3 cm depth, man-made 14C from atomic bomb tests. The concentrations of the heavy metals Cd, Pb, Zn, and Cu increase strongly towards the surface, while other metals, as Fe, Ni and Co remain almost unchanged. This phenomenon is attributed to anthropogenic influences. A comparison of the Kieler Bucht, the Bornholm and the Gotland Basins shows that today the anthropogenic addition of Zn is about 100 mg/m**2 yr in all three basins. The beginning of this excess of Zn, however, is delayed by about 20 years in, the Bornholm Basin and by about 40 years in the Gotland Basin. It is suggested that SW-NE transport of these anthropogenically mobilized metals may be related to periodic bottom water renewal in the Baltic Sea sedimentary basins.
Resumo:
A simplified classification of the Holocene sediments based on textures and grain type results in fourteen major units, twelve of which are essentially carbonate in composition. A brief description and photographic illustration of these units, together with the sedimentary and diagenetic processes which have contributed to their formation, is designed to give the reader a broad but valid impression of Persian Gulf sediments. The distribution of the fourteen sediment units throughout the Arabian parts of the basin, although complicated by numerous local bathymetric highs and depressions, is relatively simple. Because the Arabian sea floor slopes progressively from a windward shoreline to the basin center there is increasing protection from wave action towards the center of the basin. As a result sediments grade from skeletal, oolitic and pelletoidal sands (and muds in coastal lagoons) and fringing reefs, through an irregular zone of compound grain sands,into widespread skeletal muddy sands, and finally into basin center muds. These simple relationships vary laterally around the Arabian side of the gulf. Lateral variation is dependant upon orientation of the regional slope with respect to the prevailing NW wind-driven waves, angle of slope, and presence or absence of regional, structurally based barriers.
Resumo:
Six sediment cores from the submarine delta of the Rud Hilla River in the northern part of the Persian Gulf consist of fine grained,homogeneous Holocene marls. The coarse (> 63 ~) fraction varies from 0.3 - 3.5 %. The cores are 2 - 4 m long and were taken in water depths of 8 - 56 m. In spite of the great similarity and homogeneity of the cored sediments, correspondence analysis (an extension of factor analysis) of the coarse fraction reveals the presence of four distinctive sedimentary facies: (1) a minerogenic facies, 10 km from the estuary; (2) an ophiuroidostracod facies near a lateral margin of the delta, 12 - 15 km from the estuary, (3) a benthic foraminiferal-molluskan facies, in the central part of the delta 20 km from the estuary, and near its seaward margin 120 km from the estuary, (4) a gastropod-epibiotic facies, in an area of relatively slow sedimentation on the border of the delta, 90 km from the estuary. A seventh core, taken near the seaward margin of the delta of the Rud Hilla River, penetrated homogeneous, aragonite-rich mud of late Pleistocene age. Correspondence analysis of the sand fraction of the Pleistocene sediments leads to the definition of two facies that can be readily compared with the facies identified in the Holocene cores.
Resumo:
he downward transport of surface sediment deep into the sediment column by the Zoophycos-producing animal leads not only to large age differences between the Zoophycos structure and surrounding host sediment but also to large differences in age between different foraminifer species found inside the trace fossil. In the late Quaternary material from the southwestern Portuguese continental slope examined in this study, age differences of up to 2590 years were observed between the planktic foraminifer species Globigerinoides ruber and Globigerina bulloides. These differences are caused by the mixing of surface and host material with different abundances of the two species. If there are differences in the abundance of the two species at the surface and/or in the host sediment, plenty of relatively young foraminifers may be mixed with few relatively old ones, or vice versa. The age differences between species caused by the combination of deep-reaching bioturbation by the Zoophycos producer and abundance variations may be considerably larger than the age differences caused by the homogenizing bioturbation in the mixed layer.
Resumo:
During the period in question, large ice drifts transported incalculable numbers of icebergs, ice fields and ice floes from the Antarctica into the South Atlantic, confronting long-journeying sailing ships on the Cape Horn route with considerable danger. As is still the case today, the ice drifts generally tended in a northeasterly direction. Thus it can be assumed that the ice masses occuring near Cape Horn and in the South Atlantic originated in Graham Land and the South Shetland Islands, while those found in the Pacific will have come from Victoria Land. The masses drifting to Cape Horn, Isla de los Estados, the Falkland Islands and occasionally as far as the Tristan da Cunha Group are transported by the West Wind Drift and Falkland Current, diverted by the Brazil Current. The Bouvet and Agulhas Currents have little influence here. The great ice masses repeatedly reached points beyond the "outermost drift ice boundery" calculated in the course of the years, to continue on in the direction of the equator. The number of sailing ships which fell victim to the ice drifts while rounding Cape Horn can only be surmised; they simply disappeared without a trace in the expanses of the South Atlantic. Until the end of the 1900s the dangers presented by ice were less serious for westward-bound ships than for the "homeward-bounders" travelling from West to East. Following the turn of the century, however, the risk for "onwardbounders" increased significantly. Whether the ice drifts actually grew in might or whether the more frequent and more detailed reports led to this impression, could never be ascertained by the German Hydrographie Office. In the forty-one years between 1868 and 1908, ten light, ten medium and nine heavy ice years were counted, and only twelve years in which no reports of ice were submitted to the German Hydrographie Office. "One of the most terrible dangers threatening ships on their return from the Pacific Ocean," the pilot book for the Atlantic Ocean warns, "is the encounter with ice, to be expected south of the 50th parallel (approx.) in the Pacific and south of the 40th parallel (approx.) in the South Atlantic." Following the ice drift of 1854-55, thought to be the first ever recorded, the increasing numbers of sailing ships rounding Cape Horn were frequently confronted with drifts of varying sizes or with single icebergs. Then from 1892-94, a colossal ice drift crossed the path of the sailships in three stages. Several sailing ships collided with the icebergs and could be counted lucky if they survived with heavy damage to the bow and the fo regear. The reports on those which vanished for ever in the ice masses are hardly of investigative value. The English suffered particularly badly in the ice-plagued waters; their captains apparently sailed courses that led more freqently through drifts than did the sailing instructions of the German Hydrographic Office. Thus, among others, Capt. Jarvis' DUNTRUNE, also the STANMORE, ARTHURSTONE and LORD RANOCH as well as the French GALATHEE and CASHMERE all collided with icebergs. The crew of the AETHELBERTH panicked after a collision and took to their lifeboats. It was only after the ship detached itself from the iceberg it had rammed that the men returned to it and continued their journey. The TEMPLEMORE, on the other hand, had to be abandoned for good. Of the German sailing ships, the FLOTOW is to be mentioned here, and in the third phase of the drift the American SAN JOAQUIN lost a large proportion of its rigging. In the 20th century ice drifts continued to cross the courses of the Cape Horn ships. 1906 and 1908 were recorded as particularly heavy ice years. In 1908-09 both the FALKLANDBANK and the TOXTETH fell prey to ice, or so it was assumed during the subsequent Maritime Board proceedings. For the most part the German sailing ships were spared greater damages by sea. Their captains sent detailed ice reports to the German Hydrographic Office, which gratefully welcomed the information and partially incorporated it in the third and final edition of the "Pilot Book for the Atlantic Ocean." From the end of 1926 until the beginning of 1928, the last of the large sailing ships were once again confronted with "tremendous masses of icebergs and ice drifts." Reports of this period originated above all on the P-Liners PADUA, PAMIR, PASSAT, PEKING, PINNAS, PRIWALL and the ships of Gustav Erikson's fleet. The fate of the training sailship ADMIRAL KARPFANGER in connection with the ice in early 1938 was never clearly determined by the Maritime Board proceedings. Collision with an iceberg, however, is thought to be the most likely cause of accident. Today freight sailing ships no longer cross the oceans. The Cape Horn route is relatively insignificant for engine-powered ships and icebergs can be spotted in plenty of time by modern navigation technology ... The large ice drifts are no longer a menace, but only a marginal note in the final chapter of the history of transoceanic sailing.
Resumo:
Conventional K-Ar, 40Ar/39Ar total fusion, and 40Ar/39Ar incremental heating data on hawaiite and tholeiitic basalt samples from Ojin (Site 430), alkalic basalt samples from Nintoku (Site 432), and alkalic and tholeiitic basalt samples from Suiko (Site 433) seamounts in the Emperor Seamount chain give the following best ages for these volcanoes: Ojin = 55.2 ± 0.7 m.y., Nintoku = 56.2 ± 0.6 m.y., and Suiko = 64.7 ± 1.1 m.y. These new data bring to 27 the number of dated volcanoes in the Hawaiian-Emperor volcanic chain. The new dates prove that the age progression from Kilauea Volcano on Hawaii (0 m.y.) through the Hawaiian-Emperor bend (- 43 m.y.) to Koko Seamount (48.1 m.y.) in the southernmost Emperor Seamounts continues more than halfway up the Emperor chain to Suiko Seamount. The age versus distance data for the Hawaiian-Emperor chain are consistent with the kinematic hot-spot hypothesis, which predicts that the volcanoes are progressively older west and north away from the active volcanoes of Kilauea and Mauna Loa. The data are consistent with an average volcanic propagation velocity of either 8 cm/year from Suiko to Kilauea or of 6 cm/year from Suiko to Midway followed by a velocity of 9 cm/year from Midway to Kilauea, but it appears that the change in direction that formed the Hawaiian- Emperor bend probably was not accompanied by a major change in velocity.
Resumo:
During Ocean Drilling Program (ODP) Leg 180, 11 sites were drilled in the vicinity of the Moresby Seamount to study processes associated with the transition from continental rifting to seafloor spreading in the Woodlark Basin. This paper presents thermochronologic (40Ar/39Ar, 238U/206Pb, and fission track) results from igneous rocks recovered during ODP Leg 180 that help constrain the latest Cretaceous to present-day tectonic development of the Woodlark Basin. Igneous rocks recovered (primarily from Sites 1109, 1114, 1117, and 1118) consist of predominantly diabase and metadiabase, with minor basalt and gabbro. Zircon ion microprobe analyses gave a 238U/206Pb age of 66.4 ± 1.5 Ma, interpreted to date crystallization of the diabase. 40Ar/39Ar plagioclase apparent ages vary considerably according to the degree to which the diabase was altered subsequent to crystallization. The least altered sample (from Site 1109) yielded a plagioclase isochron age of 58.9 ± 5.8 Ma, interpreted to represent cooling following intrusion. The most altered sample (from Site 1117) yielded an isochron age of 31.0 ± 0.9 Ma, interpreted to represent a maximum age for the timing of subsequent hydrothermal alteration. The diabase has not been thermally affected by Miocene-Pliocene rift-related events, supporting our inference that these rocks have remained at shallow and cool levels in the crust (i.e., upper plate) since they were partially reset as a result of middle Oligocene hydrothermal alteration. These results suggest that crustal extension in the vicinity of the Moresby Seamount, immediately west of the active seafloor spreading tip, is being accommodated by normal faulting within latest Cretaceous to early Paleocene oceanic crust. Felsic clasts provide additional evidence for middle Miocene and Pliocene magmatic events in the region. Two rhyolitic clasts (from Sites 1110 and 1111) gave zircon 238U/206Pb ages of 15.7 ± 0.4 Ma and provide evidence for Miocene volcanism in the region. 40Ar/39Ar total fusion ages on single grains of K-feldspar from these clasts yielded younger apparent ages of 12.5 ± 0.2 and 14.4 ± 0.6 Ma due to variable sericitization of K-feldspar phenocrysts. 238U/206Pb zircon, 40Ar/39Ar K-feldspar and biotite total fusion, and apatite fission track analysis of a microgranite clast (from Site 1108) provide evidence for the existence of a rapidly cooled 3.0 to 1.8 Ma granitic protolith. The clast may have been transported longitudinally from the west (e.g., from the D'Entrecasteaux Islands). Alternatively, it may have been derived from a more proximal, but presently unknown, source in the vicinity of the Moresby Seamount.
Resumo:
Climatic and oceanographic changes, as occurring at a glacial-interglacial scale, may alter the environmental conditions needed for the development of prolific cold-water coral reefs and mounds. Studies constraining the temporal distribution of cold-water corals in the NE Atlantic suggested the cyclic changes of the Atlantic Meridional Overturning Circulation as the main driver for the development and dispersal of cold-water coral ecosystems. However, conclusions were hindered by lack of data from the NW Atlantic. Aiming to overcome this lack of data, the temporal occurrence of cold-water corals in the Cape Lookout area along the southeastern US margin was explored by U-series dating. Furthermore, the local influence of the regional water masses, namely the Gulf Stream, on cold-water coral proliferation and occurrence since the Last Glacial Maximum was examined. Results suggest that the occurrence of cold-water corals in the Cape Lookout area is restricted to interglacial periods, with corals being present during the last ~7 kyr and also during the Eemian (~125 ka). The reconstructed local environmental conditions suggest an offshore displacement of the Gulf Stream and increased influence from the Mid-Atlantic Bight shelf waters during the last glacial period. During the deglacial sea level rise, the Gulf Stream moved coastward providing present-day-like conditions to the surface waters. Nevertheless, present-day conditions at the ocean sea floor were not established before 7.5 cal ka BP once the ultimate demise of the Laurentide ice-sheet caused the final sea level rise and the displacement of the Gulf Stream to its present location. Occasional presence of the Gulf Stream over the site during the Mid- to Late Holocene coincides with enhanced bottom current strength and a slightly higher bottom water temperature, which are environmental conditions that are favorable for cold-water coral growth.