515 resultados para Anomalies of surface temperature
Resumo:
Alkenone unsaturation ratios and planktonic delta18O records from sediment cores of the Alboran, Ionian and Levantine basins in the Mediterranean Sea show pronounced variations in paleo-temperatures and -salinities of surface waters over the last 16,000 years. Average sea surface temperatures (SSTs) are low during the last glacial (averages prior to 13,000 years: 11-15°C), vary rapidly at the beginning of the Holocene, and increase to 17-18°C at all sites during S1 formation (dated between 9500 and 6600 calendar years). The modern temperature gradient (2-3°C) between the Mediterranean sub-basins is maintained during formation of sapropel S1 in the Eastern Mediterranean Sea. After S1, SSTs have remained uniform in the Alboran Sea at 18°C and have fluctuated around 20°C in the Ionian and Levantine Basin sites. The delta18O of planktonic foraminifer calcite decreases by 2 per mil from the late glacial to S1 sediments in the Ionian Basin and by 2.8 per mil in the Levantine Basin. In the Alboran Sea, the decrease is 1.7 per mil. Of the 2.8 per mil decrease in the Levantine Basin, the effect of global ice volume accounts for a maximum of 1.05 per mil and the temperature increase explains only a maximum of 1.3 per mil. The remainder is attributed to salinity changes. We use the temperature and salinity estimates to calculate seawater density changes. They indicate that a reversal of water mass circulation is not a likely explanation for increased carbon burial during S1 time. Instead, it appears that intermediate and deep water formation may have shifted to the Ionian Sea approximately 2000 years before onset of S1 deposition, because surface waters were as cold, but saltier than surface water in the Levantine Basin during the Younger Dryas. Sapropel S1 began to form at the same time, when a significant density decrease also occurred in the Ionian Sea.
Resumo:
Based on the map of landscapes and permafrost conditions in Yakutia (Merzlotno-landshaftnaya karta Yakutskoi0 ASSR, Gosgeodeziya SSSR, 1991), rasterized maps of permafrost temperature and active-layer thickness of Yakutia, East Siberia were derived. The mean and standard deviation at 0.5-degree grid cell size are estimated by assigning a probability density function at 0.001-degree spatial resolution. Spatial pattern of both variables are dominated by a climatic gradient from north to south, and by mountains and the soil type distribution. Uncertainties are highest in mountains and in the sporadic permafrost zone in the south. The maps are best suited as a benchmark for land surface models which include a permafrost module.
Resumo:
The mid-Cretaceous is thought to be a greenhouse world with significantly higher atmospheric pCO2 and sea-surface temperatures as well as a much flatter latitudinal thermal gradient compared to the present. This time interval was punctuated by the Cenomanian/Turonian Oceanic Anoxic Event (OAE-2, ~ 93.5 Myr ago), an episode of global, massive organic carbon burial that likely resulted in a large and abrupt pCO2 decline. However, the climatic consequences of this pCO2 drop are yet poorly constrained. We determined the first, high-resolution sea-surface temperature (SST) record across OAE-2 from a deep-marine sedimentary sequence at Ocean Drilling Program (ODP) Site 1276 in the mid-latitudinal Newfoundland Basin, NW Atlantic. By employing the organic palaeothermometer TEX86, we found that SSTs across the OAE-2 interval were extremely high, but were punctuated by a remarkably large cooling (5-11 °C), which is synchronous with the 2.5-5.5 °C cooling in SST records from equatorial Atlantic sites, and the "Plenus Cold Event". Because this global cooling event is concurrent with increased organic carbon burial, it likely acted in response to the associated pCO2 drop. Our findings imply a substantial increase in the latitudinal SST gradient in the proto-North Atlantic during this period of global cooling and reduced atmospheric pCO2, suggesting a strong coupling between pCO2 and latitudinal thermal gradients under greenhouse climate conditions.
Resumo:
Sea Surface Temperature (SST), river discharge and biological productivity have been reconstructed from a multi-proxy study of a high-temporal-resolution sedimentary sequence recovered from the Tagus deposition center off Lisbon (Portugal) for the last 2000 years. SST shows 2 °C variability on a century scale that allows the identification of the Medieval Warm Period (MWP) and the Little Ice Age (LIA). High Iron (Fe) and fine-sediment deposition accompanied by high n-alkane concentrations and presence of freshwater diatoms during the LIA (1300-1900 AD) (Science 292 (2001) 662) suggest augmented river discharge, whereas higher total-alkenone concentrations point to increased river-induced productivity. During the MWP (550-1300 AD) (Science 292 (2001) 662) larger mean-grain size and low values of magnetic susceptibility, and concentrations of Fe, n-alkanes, and n-alcohols are interpreted to reflect decreased runoff. At the same time, increased benthic and planktonic foraminifera abundances and presence of upwelling related diatoms point to increased oceanic productivity. On the basis of the excellent match found between the negative phases of the North Atlantic Oscillation (NAO) index and the intensified Tagus River discharge observed for the last century, it is hypothesized that the increased influx of terrigenous material during the LIA reflects a negative NAO-like state or the occurrence of frequent extreme NAO minima. During the milder few centuries of the MWP, stronger coastal upwelling conditions are attributed to a persistent, positive NAO-like state or the frequent occurrence of extreme NAO maxima. The peak in magnetic susceptibility, centered at 90 cm composite core depth (ccd), is interpreted as the result of the well-known 1755 AD Lisbon earthquake. The Lisbon earthquake and accompanying tsunami are estimated to have caused the loss of 39 cm of sediment (355 years of record-most of the LIA) and the instantaneous deposition of a 19-cm sediment bed.
Resumo:
The distribution of temperature and salinity, current velocities, suspended particulate matter, bottom sediments, bottom morphology, and planktonic and benthic organisms during the summer period are studied in the estuary of the large Onega River and coastal areas of the Onega Bay (White Sea) influenced by interacting marine and riverine factors.
Resumo:
To determine the relationship between the spatial dinoflagellate cyst distribution and oceanic environmental conditions, 34 surface sediments from the Eastern and Western Mediterranean Sea have been investigated for their dinoflagellate cyst content. Multivariate ordination analyses identified sea-surface temperature, chlorophyll-a , nitrate concentration, salinity, and bottom oxygen concentration as the main factors affecting dinoflagellate cyst distribution in the region. Based on the relative abundance data, two associations can be distinguished that can be linked with major oceanographic settings. (1) An offshore eastern Mediterranean regime where surface sediments are characterized by oligotrophic, warm, saline surface water, and high oxygen bottom water concentrations (Impagidinium species, Nematosphaeropsis labyrinthus, Pyxidinopsis reticulata and Operculodinium israelianum). Based on the absolute abundance, temperature is positively related to the cyst accumulation of Operculodinium israelianum. Temperature does not form a causal factor influencing the accumulation rate of the other species in this association. Impagidinium species and Nematosphaeropsis labyrinthus show a positive relationship between cyst accumulation and nitrate availability in the upper waters. (2) Species of association 2 have highest relative abundances in the Western Mediterranean Sea, Strait of Sicily/NW Ionian Sea, and/or the distal ends of the Po/Nile/Rhône River plumes. At these stations, surface waters are characterized by (relative to the other regime) higher productivity associated with lower sea-surface temperature, salinity, and lower bottom water oxygen concentrations (Selenopemphix nephroides, Echinidinium spp., Selenopemphix quanta, Quinquecuspis concreta, Brigantedinium spp. and Lingulodinium machaerophorum). Based on both the absolute and relative abundances, Selenopemphix nephroides is suggested to be a suitable indicator to trace changes in the trophic state of the upper waters. The distribution of Lingulodinium machaerophorum is related to the presence of river-influenced surface waters, notably the Nile River. We suggest that this species might form a suitable marker to trace past variations in river discharge, notably from the Nile.
Resumo:
The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. We examined two adjacent sites within the Southern Basin and at the Chioggia inlet in autumn 2007 and summer 2008. A pilot study in June 2007 on a surface water sample from Chioggia with a rather high salinity of 36.9 PSU had revealed a conspicuous bloom of CF319a-positive cells likely affiliated with the Cytophaga /Flavobacteria cluster of Bacteroidetes. These flavobacterial abundances were one to two orders of magnitude higher than in other marine surface waters. DAPI-stained cells were identified as bacteria with the general bacterial probe mixture EUB338 I-III. CARD-FISH counts with group-specific probes confirmed the dominance of Bacteroidetes (CF319a), Alphaproteobacteria (ALF968), and Gammaproteobacteria (GAM42a). CARD-FISH showed thatBetaproteobacteria and Planctomycetes were minor components of the bacterioplankton in the Lagoon of Venice.