966 resultados para Age, 14C AMS and ifrared stimulated luminescence (IRSL)
Resumo:
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice-rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner-fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.
Resumo:
The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and d11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater [B(OH)4]?/[HCO3]? with a roughly constant partition coefficient (KD =([B/Ca]of CaCO3)/([B(OH)4]-/[HCO3]-)of seawater) of 1.48 ± 0.15 * 10**-3 (2sigma), and d11B in this species is offset below d11B of the borate in seawater by 3.38 ± 0.71 per mil (2sigma). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 * 10**-3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10-50 ppmv during 19-10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution d11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.
Resumo:
We report here the results of a study aimed at providing radiometric age control on glacial events in the Weddell Sea during the late Quaternary. Sediment cores from the eastern continental shelf, where the East Antarctic ice sheet was grounded, have recovered glacial-marine sediments resting on tills and the latter deposits predate the isotope stage 2 last glacial maximum. Sediment cores from the continental slope and rise sampled a prominent ice-rafted debris layer, and radiocarbon ages indicate that this ice-rafting event took place prior to 26 000 yr B.P. Thus, the combined data indicate that significant deglaciation of the Weddell Sea continental shelf took place prior to the last glacial maximum. Our data also suggest that the ice masses that border the Weddell Sea are more extensive than they were during the previous glacial minimum.
Resumo:
We construct age models for a suite of cores from the northeast Atlantic Ocean by means of accelerator mass spectrometer dating of a key core, BOFS 5K, and correlation with the rest of the suite. The effects of bioturbation and foraminiferal species abundance gradients upon the age record are modeled using a simple equation. The degree of bioturbation is estimated by comparing modeled profiles with dispersal of the Vedde Ash layer in core 5K, and we find a mixing depth of roughly 8 cm for sand-sized material. Using this value, we estimate that age offsets between unbioturbated sediment and some foraminifera species after mixing may be up to 2500 years, with lesser effect on fine carbonate (< 10 µm) ages. The bioturbation model illustrates problems associated with the dating of 'instantaneous' events such as ash layers and the 'Heinrich' peaks of ice-rafted detritus. Correlations between core 5K and the other cores from the BOFS suite are made on the basis of similarities in the downcore profiles of oxygen and carbon isotopes, magnetic susceptibility, water and carbonate content, and via marker horizons in X radiographs and ash beds.
Resumo:
The formation of Lake Melkoe (64°51'30''N, 175°14'E, altitude 36 m), one of the largest lakes of the Anadyr Lowland, is related to the moraine left by the Tyellakh Glacier, which originated on the Pekul'nei Ridge. The lake (6 km long and 4.4 km wide) extends in the northwestern direction. The Kholmy Priozernye moraine (16 km long along the arc, 1.5 km wide, and 92-103 masl) surrounds the lake in the west and south. The lake coasts are covered by sand with pebbles and shingle. The flat lake bottom dips toward its central part to a depth of 160 cm. In distinction from many other lakes of the Anadyr Lowland, the thickness of the upper layer of water-saturated sediments overlying compact aleurites in Lake Melkoe is only 5-6 cm. Such a peculiarity of the bottom is explained by the large size of the lake, low sedimentation rates, and frequent storms caused by strong winds. Regional and local vegetation corresponds to a mosaic tundra represented by high shrubs Pinus pumila, Duschekia fruticosa , and hummocky Betula - Ericales - Eriophorum communities. Pinus pumila and Alnus form thickets on the banks of the Anadyr River, coasts of lakes, and moraine slopes.
Resumo:
The continental margin off the La Plata Estuary (SE South America) is characterized by high fluvial sediment supply and strong ocean currents. High-resolution sediment-acoustic data combined with sedimentary facies analysis, AMS-14C ages, and neodymium isotopic data allowed us to reconstruct late Quaternary sedimentary dynamics in relation to the two major sediment sources, the La Plata Estuary and the Argentine margin. Sediments from these two provinces show completely different dispersal patterns. We show that the northward-trending La Plata paleo-valley was the sole transit path for the huge volumes of fluvial material during lower sea levels. In contrast, material from the Argentine margin sector was transported northwards by the strong current system. Despite the large sediment volumes supplied by both sources, wide parts of the shelf were characterized by either persistent non-deposition or local short-term depocenter formation. The location and formation history of these depocenters were primarily controlled by the interplay of sea level with current strength and local morphology. The high sediment supply was of secondary importance to the stratigraphic construction, though locally resulting in high sedimentation rates. Thus, the shelf system off the La Plata Estuary can be considered as a hydrodynamic-controlled end-member.
Resumo:
About one third of the anthropogenic carbon dioxide (CO2) released into the atmosphere in the past two centuries has been taken up by the ocean. As CO2 invades the surface ocean, carbonate ion concentrations and pH are lowered. Laboratory studies indicate that this reduces the calcification rates of marine calcifying organisms, including planktic foraminifera. Such a reduction in calcification resulting from anthropogenic CO2 emissions has not been observed, or quantified in the field yet. Here we present the findings of a study in the Western Arabian Sea that uses shells of the surface water dwelling planktic foraminifer Globigerinoides ruber in order to test the hypothesis that anthropogenically induced acidification has reduced shell calcification of this species. We found that light, thin-walled shells from the surface sediment are younger (based on 14C and d13C measurements) than the heavier, thicker-walled shells. Shells in the upper, bioturbated, sediment layer were significantly lighter compared to shells found below this layer. These observations are consistent with a scenario where anthropogenically induced ocean acidification reduced the rate at which foraminifera calcify, resulting in lighter shells. On the other hand, we show that seasonal upwelling in the area also influences their calcification and the stable isotope (d13C and d18O) signatures recorded by the foraminifera shells. Plankton tow and sediment trap data show that lighter shells were produced during upwelling and heavier ones during non-upwelling periods. Seasonality alone, however, cannot explain the 14C results, or the increase in shell weight below the bioturbated sediment layer. We therefore must conclude that probably both the processes of acidification and seasonal upwelling are responsible for the presence of light shells in the top of the sediment and the age difference between thick and thin specimens.
Resumo:
This study investigates the landscape evolution and soil development in the loess area near Regensburg between approximately 6000-2000 yr BP (radiocarbon years), Eastern Bavaria. The focus is on the question how man and climate influenced landscape evolution and what their relative significance was. The theoretical background concerning the factors that controlled prehistoric soil erosion in Middle Europe is summarized with respect to rainfall intensity and distribution, pedogenesis, Pleistocene relief, and prehistoric farming. Colluvial deposits , flood loams, and soils were studied at ten different and representative sites that served as archives of their respective palaeoenvironments. Geomorphological, sedimentological, and pedological methods were applied. According to the findings presented here, there was a high asynchronity of landscape evolution in the investigation area, which was due to prehistoric land-use patterns. Prehistoric land use and settlement caused highly difIerenciated phases of morphodynamic activity and stability in time and space. These are documented at the single catenas ofeach site. In general, Pleistocene relief was substantially lowered. At the same time smaller landforms such as dells and minor asymmetric valleys filled up and strongly transformed. However, there were short phases at many sites, forming short lived linear erosion features ('Runsen'), resulting from exceptional rainfalls. These forms are results of single events without showing regional trends. Generally, the onset of the sedimentation of colluvial deposits took place much earlier (usually 3500 yr BP (radiocarbon) and younger) than the formation of flood loams. Thus, the deposition of flood loams in the Kleine Laaber river valley started mainly as a consequence of iron age farming only at around 2500 yr BP (radiocarbon). A cascade system explains the different ages of colluvial deposits and flood loams: as a result of prehistoric land use, dells and other minor Pleistocene landforms were filled with colluvial sediments. After the filling of these primary sediment traps , eroded material was transported into flood plains, thus forming flood loams. But at the moment we cannot quantify the extent ofprehistoric soil erosion in the investigation area. The three factors that controlled the prehistoric Iandscapc evolution in the Ioess area near Regensburg are as follows: 1. The transformation from a natural to a prehistoric cultural landscape was the most important factor: A landscape with stable relief was changed into a highly morphodynamic one with soil erosion as the dominant process of this change. 2. The sediment traps of the pre-anthropogenic relief determined where the material originated from soil erosion was deposited: either sedimentation took place on the slopes or the filled sediment traps of the slopes rendered flood loam formation possible. Climatic influence of any importance can only be documented as the result of land use in connection with singular and/or statistic events of heavy rainfalls. Without human impact, no significant change in the Holocene landscape would have been possible.
Resumo:
A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal delta18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial.
Resumo:
We report the intercalibration of paleomagnetic secular variation (PSV) and radiocarbon dates of two expanded postglacial sediment cores from geographically proximal, but oceanographically and sedimentologically contrasting settings. The objective is to improve relative correlation and chronology over what can be achieved with either method alone. Core MD99-2269 was taken from the Húnaflóaáll Trough on the north Iceland shelf. Core MD99-2322 was collected from the Kangerlussuaq Trough on the east Greenland margin. Both cores are well dated, with 27 and 20 accelerator mass spectrometry 14C dates for cores 2269 and 2322, respectively. Paleomagnetic measurements made on u channel samples document a strong, stable, single-component magnetization. The temporal similarities of paleomagnetic inclination and declination records are shown using each core's independent calibrated radiocarbon age model. Comparison of the PSV records reveals that the relative correlation between the two cores could be further improved. Starting in the depth domain, tie points initially based on calibrated 14C dates are either adjusted or added to maximize PSV correlations. Radiocarbon dates from both cores are then combined on a common depth scale resulting from the PSV correlation. Support for the correlation comes from the consistent interweaving of dates, correct alignment of the Saksunarvatn tephra, and the improved correlation of paleoceanographic proxy data (percent carbonate). These results demonstrate that PSV correlation used in conjunction with 14C dates can improve relative correlation and also regional chronologies by allowing dates from various stratigraphic sequences to be combined into a single, higher dating density, age-to-depth model.
Resumo:
Deep-sea sediment core FR1/97 GC-12 is located 990 mbsl in the northern Tasman Sea, southwest Pacific, where Antarctic Intermediate Water (AAIW) presently impinges the continental slope of the southern Great Barrier Reef. Analysis of carbon (d13C) and oxygen (d18O) isotope ratios on a suite of planktonic and benthic foraminifera reveals rapid changes in surface and intermediate water circulation over the last 30 kyr. During the Last Glacial Maximum, there was a large d13C offset (1.1 per mil) between the surface-dwelling planktonic foraminifera and benthic species living within the AAIW. In contrast, during the last deglaciation (Termination 1), the d13C(planktonic-benthic) offset reduced to 0.4 per mil prior to an intermediate offset (0.7 per mil) during the Holocene. We suggest that variations in the dominance and direction of AAIW circulation in the Tasman Sea, and increased oceanic ventilation, can account for the rapid change in the water column d13C(planktonic-benthic) offset during the glacial-interglacial transition. Our results support the hypothesis that intermediate water plays an important role in propagating climatic changes from the polar regions to the tropics. In this case, climatic variations in the Southern Hemisphere may have led to the rapid ventilation of deep water and AAIW during Termination 1, which contributed to the postglacial rise in atmospheric CO2.
Resumo:
Holocene and latest Pleistocene oceanographic conditions and the coastal climate of northern California have varied greatly, based upon high-resolution studies (ca. every 100 years) of diatoms, alkenones, pollen, CaCO3%, and total organic carbon at Ocean Drilling Program (ODP) Site 1019 (41.682°N, 124.930°W, 980 m water depth). Marine climate proxies (alkenone sea surface temperatures [SSTs] and CaCO3%) behaved remarkably like the Greenland Ice Sheet Project (GISP)-2 oxygen isotope record during the Bølling-Allerod, Younger Dryas (YD), and early part of the Holocene. During the YD, alkenone SSTs decreased by >3°C below mean Bølling-Allerod and Holocene SSTs. The early Holocene (ca. 11.6 to 8.2 ka) was a time of generally warm conditions and moderate CaCO3 content (generally >4%). The middle part of the Holocene (ca. 8.2 to 3.2 ka) was marked by alkenone SSTs that were consistently 1-2°C cooler than either the earlier or later parts of the Holocene, by greatly reduced numbers of the gyre-diatom Pseudoeunotia doliolus (<10%), and by a permanent drop in CaCO3% to <3%. Starting at ca. 5.2 ka, coastal redwood and alder began a steady rise, arguing for increasing effective moisture and the development of the north coast temperate rain forest. At ca. 3.2 ka, a permanent ca. 1°C increase in alkenone SST and a threefold increase in P. doliolus signaled a warming of fall and winter SSTs. Intensified (higher amplitude and more frequent) cycles of pine pollen alternating with increased alder and redwood pollen are evidence that rapid changes in effective moisture and seasonal temperature (enhanced El Niño-Southern Oscillation [ENSO] cycles) have characterized the Site 1019 record since about 3.5 ka.
Resumo:
The causes for discordant radiocarbon results on multiple species of planktonic foraminifera from high-sedimentation-rate marine sediments are investigated. We have documented two causes for these anomalous results. One is the addition of secondary radiocarbon for which we have, to date, only one firm example. It involves an opal-rich sediment. The other is the incorporation of reworked material. Again, we have, to date, only one firm example. It involves a rapidly deposited ocean margin sediment. However, we have three other examples where reworking is the most likely explanation. On the basis of this study it is our conclusion that, where precise radiocarbon dating of high-deposition-rate marine sediment is required, a prerequisite is to demonstrate that concordant ages can be obtained on pairs of fragile and robust planktic shells. For sediment rich in opal, it is advisable to check for secondary calcite by comparing ages obtained on acid-leached samples with those on unleached samples.
Resumo:
A depth transect of cores from 1268 to 3909 m water depth in the western South Atlantic are ideally situated to monitor the interocean exchange of deep water and variations in the relative strength of northern and southern sources of deep water production. Benthic foraminiferal Cd/Ca and d13C data suggest that Glacial North Atlantic Intermediate Water (GNAIW) extended at least as far south as 28°S in the western South Atlantic. The core of nutrient-depleted water was situated at ~1500 m, above and below water masses with higher nutrient concentrations. When examined in conjunction with published paired Cd/Ca and d13C from intermediate depth cores from other basins, it appears that the extent of GNAIW influence on the intermediate waters of the world's oceans was less than suggested previously. Differentiating among possible pathways for the glacial deep ocean (>3 km) requires a better understanding of the controls on Cd/Ca and d13C values of benthic foraminifera.