460 resultados para Acartia danae, c2
Resumo:
A field study was conducted in Santala Bay with weekly samplings during February and March 2000. Ice thickness was 20-28 cm, snow cover 0-1 cm. The under-ice water column was stratified with a cold (-0.3 - 0.2°C) and less saline (S = 2.1-4.9) interface layer. Concentrations of particulate organic carbon (0.5-5.8 mg POC/l) and algal pigments (0.3-18.2 µg chlorophyll a/l) were higher in the ice than in the water (0.2-0.5 mg POC/l, 1.6-7.1 µg chlorophyll a/l) and peaked mostly in the bottom part of the ice. The thin ice and almost lacking snow cover had favoured an early ice-algal and phytoplankton bloom. The diversity of metazoans was low, with six species in the ice and eight species in the under-ice water. The rotifer Synchaeta cf. littoralis dominated both in ice and water, with maximum abundances of 230 individuals/l in the bottom part of the ice. Rotifer eggs were also observed in the ice. Baltic sea ice seems to be a suitable habitat for rotifers. Nauplii and copepodids of the calanoid Acartia longiremis in the under-ice water showed some herbivorous feeding (<0.1-0.23 ng gut pigment/individual), but analysis of fatty acids, fatty alcohols and biomarker ratios indicated a more omnivorous/carnivorous diet. Despite low temperatures, this copepod showed growth and development below the ice, doubling in numbers (mainly CI, CII) from 118 to 230 individuals m during the third week of March.
Resumo:
Rising levels of CO2 in the atmosphere have led to increased CO2 concentrations in the oceans. This enhanced carbon availability to the marine primary producers has the potential to change their nutrient stoichiometry, and higher carbon to nutrient ratios are expected. As a result, the quality of the primary producers as food for herbivores may change. Here, we present experimental work showing the effect of feeding Rhodomonas salina grown under different pCO2 (200, 400 and 800 µatm) on the copepod Acartia tonsa. The rate of development of copepodites decreased with increasing CO2 availability to the algae. The surplus carbon in the algae was excreted by the copepods, with younger stages (copepodites) excreting most of their surplus carbon through respiration, and adult copepods excreting surplus carbon mostly as DOC. We consider the possible consequences of different excretory pathways for the ecosystem. A continued increase in the CO2 availability for primary production, together with changes in the nutrient loading of coastal ecosystems, may cause changes in the trophic links between primary producers and herbivores.