347 resultados para 165-999B
Resumo:
A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation.
Resumo:
Crystal size measurements have been carried out on tephra fall layers of Miocene to recent age from Sites 998, 999, and 1000 in the western Caribbean Sea. Maximum crystal size is used as a proxy for the grain size characteristics of the layers and an index of atmospheric dispersal from source eruptions. Crystal sizes range from 50 to 650 µm with the majority falling between 200 and 300 µm. All three sites exhibit a coarsening in the grain size of tephra layers with increasing age to the early Miocene that broadly correlates with an increase in the frequency of layers. Analysis of the present lower and upper level atmospheric circulation in the western Caribbean suggests that the layers were derived from source eruptions to the west of the sites somewhere in the Central American region. Minimum distances to these sources are of the order of 700 km. Crystal sizes in tephra layers at these distances are consistent with their derivation from energetic pyroclastic flow-forming eruptions that injected tephra to stratospheric levels by large-scale co-ignimbrite and plinian-style plumes. Coarsening of the layers during the Miocene peak of explosive volcanism cannot be attributed to any major change in paleowind intensity and is taken to represent the occurrence of more energetic eruptions that were able to disperse tephra over larger areas.
Resumo:
Temperature reconstructions indicate that the Pliocene was ~3 °C warmer globally than today, and several recent reconstructions of Pliocene atmospheric CO2 indicate that it was above pre-industrial levels and similar to those likely to be seen this century. However, many of these reconstructions have been of relatively low temporal resolution, meaning that these records may have failed to capture variations associated with the 41 Kyr glacial-interglacial cycles thought to operate in the Pliocene. Here we present a new, high temporal resolution alkenone carbon isotope based record of pCO2 spanning 2.8 to 3.3 million years ago from ODP Site 999. Our record is of high enough resolution (~19 Kyrs) to resolve glacial-interglacial changes beyond the intrinsic uncertainty of the proxy method. The record suggests that Pliocene CO2 levels were relatively stable, exhibiting variation less than 55 ppm. We perform sensitivity studies to investigate the possible effect of changing sea surface temperature, which highlights the importance of accurate and precise SST reconstructions for alkenone palaeobarometry, but demonstrate that these uncertainties do not affect our conclusions of relatively stable pCO2 levels during this interval.
Resumo:
A total of 53 calcareous nannofossil datums were detected in Quaternary and Neogene sections recovered during Ocean Drilling Program Leg 165 in the Caribbean Sea. Most of the low-latitude nannofossil zonal markers of Okada and Bukry could be determined at all of the sites. Additionally, size distribution patterns of specimens of Reticulofenestra, a common genus in Neogene and Quaternary sediments, were examined to interpret the biostratigraphic utility of changes in size.
Resumo:
We constructed a high-resolution Mg/Ca record on the planktonic foraminifer Globigerinoides sacculifer in order to explore the change in sea surface temperature (SST) due to the shoaling of the Isthmus of Panama as well as the impact of secondary factors like diagenesis and large salinity fluctuations. The study covers the latest Miocene and the early Pliocene (5.6-3.9 Ma) and was combined with d18O to isolate changes in sea surface salinity (SSS). Before 4.5 Ma, SSTMg/Ca and SSS show moderate fluctuations, indicating a free exchange of surface ocean water masses between the Pacific and the Atlantic. The increase in d18O after 4.5 Ma represents increasing salinities in the Caribbean due to the progressive closure of the Panamanian Gateway. The increase in Mg/Ca toward values of maximum 7 mmol/mol suggests that secondary influences have played a significant role. Evidence of crystalline overgrowths on the foraminiferal tests in correlation with aragonite, Sr/Ca, and productivity cyclicities indicates a diagenetic overprint on the foraminiferal tests. Laser ablation inductively coupled plasma-mass spectrometry analyses, however, do not show significantly increased Mg/Ca ratios in the crystalline overgrowths, and neither do calculations based on pore water data conclusively result in significantly elevated Mg/Ca ratios in the crystalline overgrowths. Alternatively, the elevated Mg/Ca ratios might have been caused by salinity as the d18O record of Site 1000 has been interpreted to represent large fluctuations in SSS, and cultivating experiments have shown an increase in Mg/Ca with increasing salinity. We conclude that the Mg/Ca record <4.5 Ma can only reliably be considered for paleoceanographical purposes when the minimum values, not showing any evidence of secondary influences, are used, resulting in a warming of central Caribbean surface water masses after 4.5 Ma of ~2°C.
Resumo:
everal hypotheses have been put forward to explain the onset of intensive glaciations on Greenland, Scandinavia, and North America during the Pliocene epoch between 3.6 and 2.7 million years ago (Ma). A decrease in atmospheric CO2 may have played a role during the onset of glaciations, but other tectonic and oceanic events occurring at the same time may have played a part as well. Here we present detailed atmospheric CO2 estimates from boron isotopes in planktic foraminifer shells spanning 4.6-2.0 Ma. Maximal Pliocene atmospheric CO2 estimates gradually declined from values around 410 µatm to early Pleistocene values of 300 ?atm at 2.0 Ma. After the onset of large-scale ice sheets in the Northern Hemisphere, maximal pCO2 estimates were still at 2.5 Ma +90 µatm higher than values characteristic of the early Pleistocene interglacials. By contrast, Pliocene minimal atmospheric CO2 gradually decreased from 310 to 245 µatm at 3.2 Ma, coinciding with the start of transient glaciations on Greenland. Values characteristic of early Pleistocene glacial atmospheric CO2 of 200 ?atm were abruptly reached after 2.7 Ma during the late Pliocene transition. This trend is consistent with the suggestion that ocean stratification and iron fertilization increased after 2.7 Ma in the North Pacific and Southern Ocean and may have led to increased glacial CO2 storage in the oceanic abyss after 2.7 Ma onward.
Resumo:
An expanded Cariaco Basin 14C chronology is tied to 230Th-dated Hulu Cave speleothem records in order to provide detailed marine-based 14C calibration for the past 50,000 years. The revised, high-resolution Cariaco 14C calibration record agrees well with data from 230Th-dated fossil corals back to 33 ka, with continued agreement despite increased scatter back to 50 ka, suggesting that the record provides accurate calibration back to the limits of radiocarbon dating. The calibration data document highly elevated Delta14C during the Glacial period. Carbon cycle box model simulations show that the majority of observed Delta14C change can be explained by increased 14C production. However, from 45 to 15 ka, Delta14C remains anomalously high, indicating that the distribution of radiocarbon between surface and deep ocean reservoirs was different than it is today. Additional observations of the magnitude, spatial extent and timing of deep ocean Delta14C shifts are critical for a complete understanding of observed Glacial Delta14C variability.