471 resultados para epsilon(Nd)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An evaluation has been made of the method of establishing the REE contents and patterns and Nd isotopic compositions of sea water over Cenozoic time from their record in the FeMn-oxide coatings of foraminiferal calcite. Using 0-60 Ma samples from the Rio Grande Rise (DSDP Site 357) it has been established that the REE contents of the coatings are generally similar to those of Recent samples. However, in the Cenozoic samples the surface coatings have been diagenetically modified under suboxic conditions resulting in a distinctly different REE pattern although the original 143Nd/144Nd ratios appear to have been preserved. The Nd isotopic curve for Cenozoic sea water in the S. Atlantic shows clear temporal trends, although these are not so extreme as to show 143Nd/144Nd ratios outside the range observed in modem sea water. With the principal exception of the oldest samples there is an approximate inverse relationship between the Nd and Sr isotopic compositions of the foraminifera. It is suggested that the changes reflect both global changes in the relative proportions of Nd and Sr derived from continental input and from the weathering of volcanic debris together with short term and local variations to which the Sr curve is insensitive, reflecting the different response times of the two elements to changes in oceanic input functions. The Nd isotope curve appears to be a potentially useful tracer of ocean palaeochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Pb, Sr, and Nd isotope data are presented for 64 samples from the six backarc sites drilled during Leg 135. Systematic changes in Pb and Sr compositions illustrate significant isotopic variations between and within sites as well as provide two key pieces of information. First, a recent influx of asthenosphere with Indian Ocean mantle affinities has occurred and has successfully displaced older "Pacific" asthenosphere from the mantle underlying the backarc region. Second, clear evidence exists for mixing between these two asthenospheric end-members and at least one "arc-like" component. The latter was not the same as most material currently erupting in the Tofua Arc, but it must have had a more radiogenic Pb-isotope signature, perhaps similar to rocks analyzed from the islands of Tafahi, and Niuatoputapu. A comparison between the isotopic variations and the tectonic setting of the drill sites reveals consistent and important information regarding the mantle dynamics beneath the evolving backarc basin. We propose a model in which the source of upwelling magmas changes from Pacific to Indian Ocean asthenosphere with the propagation of seafloor spreading, a model with important implications for the rate of mantle influx into this region. Although the chemistries of backarc magmas have been profoundly influenced by this process, an additional consequence is the advection of Indian Ocean asthenosphere into the sub-arc mantle source. The isotopic compositions of arc rocks from the vicinity have been reevaluated on the basis of the proposed mantle advection model. We suggest that the slab-derived flux of trace elements into the arc wedge has remained relatively uniform with time (i.e., ~40 Ma), so that the change in arc chemistry results from mantle source substitution, rather than from differences in the composition of the downgoing plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceanic sediments contain the products of erosion of continental crust, biologic activity and chemical precipitation. These processes create a large diversity of their chemical and isotopic compositions. Here we focus on the influence of the distance from a continental platform on the trace element and isotopic compositions of sediments deposited on the ocean floor and highlight the role of zircons in decoupling high-field strength elements and Hf isotopic compositions from other trace elements and Nd isotopic compositions. We report major and trace element concentrations as well as Sr and Hf isotopic data for 80 sediments from the Lesser Antilles forearc region. The trace-element characteristics and the Sr and Hf isotopic compositions are generally dominated by detrital material from the continental crust but are also variably influenced by chemical or biogenic carbonate and pure biogenic silica. Next to the South American continent, at DSDP Site 144 and on Barbados Island, sediments, coarse quartz arenites, exhibit marked Zr and Hf excesses that we attribute to the presence of zircon. In contrast, the sediments from DSDP Site 543, which were deposited farther away from the continental platform, consist of fine clay and they show strong deficiencies in Zr and Hf. The enrichment or depletion of Zr-Hf is coupled to large changes in Hf isotopic compositions (-30 < epsilon-Hf < +4) that vary independently from the Nd isotopes. We interpret this feature as a clear expression of the "zircon effect" suggested by Patchett and coauthors in 1984. Zircon-rich sediments deposited next to the South American continent have very low epsilon-Hf values inherited from old zircons. In contrast, in detrital clay-rich sediments deposited a few hundred kilometers farther north, the mineral fraction is devoid of zircon and they have drastically higher epsilon-Hf values inherited from finer, clay-rich continental material. In the two DSDP sites, average Hf isotopes are very unradiogenic relative to other oceanic sediments worldwide (epsilon-Hf = -14.4 and -7.4) and they define the low Hf end member of the sedimentary field in Hf-Nd space. Their compositions correspond to end members that, when mixed with mantle, are able to reproduce the pattern of volcanic rocks from the Lesser Antilles. More generally, we find a relationship between Nb/Zr ratios and the vertical deviation of Hf isotope ratios from the Nd-Hf terrestrial array and we suggest that this relationship can be used as a tool to distinguish sediment input from fractionation during melting during the formation of arc lavas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical properties of basalts from Ocean Drilling Program Sites 800 and 801 in the Pigafetta Basin and Site 802 in the East Mariana Basin, including porosity, wet-bulk density, grain density, compressional wave velocity, and thermal conductivity, were measured aboard JOIDES Resolution during Leg 129. The ranges for the properties are large, as typified by the velocity, which varies from 3.46 to 6.59 km/s. Extensively altered basalts immediately above and below a silicified hydrothermal deposit (60-69 m sub-basement depth) at Site 801 display the highest porosity, and lowest bulk density, velocity, and thermal conductivity, whereas the slightly altered rocks from Site 802 and the lowermost part of Site 801 represent the other extreme in physical properties variations. In order to better establish the relationship between physical properties and alteration of the rocks, the compressional wave velocities were compared with results from major and trace elemental analyses and petrographic examination of select samples. For the Leg 129 basalts, velocity displays a generally consistent decrease with increasing K2O, H2O+, loss on ignition, and Rb contents and the value of Fe3+/FeT and decreasing concentrations of SiO2, FeOT, CaO, MgO, and MnO. These trends are consistent with trends documented for the progressive alteration of oceanic crust and indicate that on a laboratory sample scale, basalt alteration is largely responsible for the variation of the physical properties of basalts sampled at Sites 800, 801, and 802.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New trace element, Sr-, Nd-, Pb- and Hf isotope data provide insights into the evolution of the Tonga-Lau Basin subduction system. The involvement of two separate mantle domains, namely Pacific MORB mantle in the pre-rift and early stages of back-arc basin formation, and Indian MORB mantle in the later stages, is confirmed by these results. Contrary to models proposed in recent studies on the basis of Pb isotope and other compositional data, this change in mantle wedge character best explains the shift in the isotopic composition, particularly 143Nd/144Nd ratios, of modern Tofua Arc magmas relative to all other arc products from this region. Nevertheless, significant changes in the slab-derived flux during the evolution of the arc system are also required to explain second order variations in magma chemistry. In this region, the slab-derived flux is dominated by fluid; however, these fluids carry Pb with sediment-influenced isotopic signatures, indicating that their source is not restricted to the subducting altered mafic oceanic crust. This has been the case from the earliest magmatic activity in the arc (Eocene) until the present time, with the exception of two periods of magmatic activity recorded in samples from the Lau Islands. Both the Lau Volcanic Group, and Korobasaga Volcanic Group lavas preserve trace element and isotope evidence for a contribution from subducted sediment that was not transported as a fluid, but possibly in the form of a melt. This component shares similarities with that influencing the chemistry of the northern Tofua Arc magmas, suggesting some caution may be required in the adoption of constraints for the latter dependent upon the involvement of sediments from the Louisville Ridge. A key outcome of this study is to demonstrate that the models proposed to explain subduction zone magmatism cannot afford to ignore the small but important contributions made by the mantle wedge to the incompatible trace element inventory of arc magmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Central American Volcanic Arc (CAVA) has been the subject of intensive research over the past few years, leading to a variety of distinct models for the origin of CAVA lavas with various source components. We present a new model for the NW Central American Volcanic Arc based on a comprehensive new geochemical data set (major and trace element and Sr-Nd-Pb-Hf-O isotope ratios) of mafic volcanic front (VF), behind the volcanic front (BVF) and back-arc (BA) lava and tephra samples from NW Nicaragua, Honduras, El Salvador and Guatemala. Additionally we present data on subducting Cocos Plate sediments (from DSDP Leg 67 Sites 495 and 499) and igneous oceanic crust (from DSDP Leg 67 Site 495), and Guatemalan (Chortis Block) granitic and metamorphic continental basement. We observe systematic variations in trace element and isotopic compositions both along and across the arc. The data require at least three different endmembers for the volcanism in NW Central America. (1) The NW Nicaragua VF lavas require an endmember with very high Ba/(La, Th) and U/Th, relatively radiogenic Sr, Nd and Hf but unradiogenic Pb and low d18O, reflecting a largely serpentinite-derived fluid/hydrous melt flux from the subducting slab into a depleted N-MORB type of mantle wedge. (2) The Guatemala VF and BVF mafic lavas require an enriched endmember with low Ba/(La, Th), U/Th, high d18O and radiogenic Sr and Pb but unradiogenic Nd and Hf isotope ratios. Correlations of Hf with both Nd and Pb isotopic compositions are not consistent with this endmember being subducted sediments. Granitic samples from the Chiquimula Plutonic Complex in Guatemala have the appropriate isotopic composition to serve as this endmember, but the large amounts of assimilation required to explain the isotope data are not consistent with the basaltic compositions of the volcanic rocks. In addition, mixing regressions on Nd vs. Hf and the Sr and O isotope plots do not go through the data. Therefore, we propose that this endmember could represent pyroxenites in the lithosphere (mantle and possibly lower crust), derived from parental magmas for the plutonic rocks. (3) The Honduras and Caribbean BA lavas define an isotopically depleted endmember (with unradiogenic Sr but radiogenic Nd, Hf and Pb isotope ratios), having OIB-like major and trace element compositions (e.g. low Ba/(La, Th) and U/Th, high La/Yb). This endmember is possibly derived from melting of young, recycled oceanic crust in the asthenosphere upwelling in the back-arc. Mixing between these three endmember types of magmas can explain the observed systematic geochemical variations along and across the NW Central American Arc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic fabric analyses from two North Atlantic drift deposits provide proxies for determining relative variations in the strength of abyssal flow over the last 10 my. The data show a cessation of current-controlled sedimentation at the shallower Feni Drift (2417 m) at the time of onset of Northern Hemisphere glaciation (2.6 Ma). Drift formation ended nearly 2 my earlier (4.2 Ma) at the deeper Gardar Drift (3220 m), implying stepwise reduction in deep-water flow. Relatively light delta18O values at the deeper Gardar Drift indicate a warmer, thus also more salty, water mass site prior to 6 Ma. We interpret this as representing Mediterranean Sea water, which flowed north at depths greater than that of the Feni Drift Site. The supply of Mediterranean Water to the North Atlantic was shut off as the Gibraltar Straits closed, causing the Messinian salinity crisis, and never returned to that position in the water column after the Mediterranean opened again.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineralogy, major and trace elements, and neodymium and strontium isotopes of surface sediments in the South China Sea (SCS) are documented with the aim of investigating their applicability in provenance tracing. The results indicate that mineralogical compositions alone do not clearly identify the sources for the bulk sediments in the SCS. The Nd isotopic compositions of the SCS sediments show a clear zonal distribution. The most negative epsilon-Neodymium values were obtained for sediments from offshore South China (-13.0 to -10.7), while those from offshore Indochina are slightly more positive (-10.7 to -9.4). The Nd isotopic compositions of the sediments from offshore Borneo are even higher, with epsilon-Neodymium ranging from -8.8 to -7.0, and the sediments offshore from the southern Philippine Arc have the most positive epsilon-Neodymium values, from -3.7 to +5.3. This zonal distribution in epsilon-Neodymium is in good agreement with the Nd isotopic compositions of the sediments supplied by river systems that drain into the corresponding regions, indicating that Nd isotopic compositions are an adequate proxy for provenance tracing of SCS sediments. Sr isotopic compositions, in contrast, can only be used to identify the sediments from offshore South China and offshore from the southern Philippine Arc, as the 87Sr/86Sr ratios of sediments from other regions overlapped. Similar zonal distributions are also apparent in a La-Th-Sc discrimination diagram. Sediments fromthewestmargin of the SCS, such as those fromBeibuwan Bay, offshore fromHainan Island, offshore from Indochina, and from the Sunda Shelf plot in the same field, while those offshore from the northeastern SCS, offshore from Borneo, and offshore from the southern Philippine Arc plot in distinct fields. Thus, the La-Th-Sc discrimination diagram, coupledwith Nd isotopes, can be used to trace the provenance of SCS sediments. Using this method, we re-assessed the provenance changes of sediments at Ocean Drilling Program (ODP) Site 1148 since the late Oligocene. The results indicate that sediments deposited after 23.8 Ma (above 455 mcd: meters composite depth) were supplied mainly from the eastern South China Block, with a negligible contribution from the interior of the South China Block. Sediments deposited before 26 Ma (beneath 477 mcd) were supplied mainly from the North Palawan Continental Terrane, which may retain the geochemical characteristics of the materials covered on the late Mesozoic granitoids along the coastal South China. For that the North Palawan Continental Terrane is presently located within the southern Philippine Arc but was located close to ODP Site 1148 in the late Oligocene. The weathering products of volcanic material associated with the extension of the SCS ocean crust also contributed to these sediments. The rapid change in sediment source at 26-23.8 Ma probably resulted from a sudden cessation of sediment supply from the North Palawan Continental Terrane. Wesuggest that the North Palawan Continental Terrane drifted southwards alongwith the extension of the SCS ocean crust during that time, and when the basin was large enough, the supply of sediment from the south to ODP Site 1148 at the north slope may have ceased.