351 resultados para drift


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2014S15, an autonomous platform, drifting on Arctic sea ice, deployed during POLARSTERN cruise ARK-XXVIII/4 (PS87). The resulting time series describes the evolution of snow depth as a function of place and time between 2014-08-29 and 2014-12-31 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). The buoy was installed on multi year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Records without any snow depth may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow depth, because no initial readings of absolute snow depth are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2014S17, an autonomous platform, drifting on Antarctic sea ice, deployed during POLARSTERN cruise ANT-XXX/2 (PS89). The resulting time series describes the evolution of snow depth as a function of place and time between 2014-12-20 and 2015-02-01 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). In this data set, diurnal variations occur in the data set, although the sonic readings were compensated for temperature changes. Records without any snow depth may still be used for sea ice drift analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2014S24, an autonomous platform, installed close to Neumayer III Base, Antarctic during Antarctic Fast Ice Network 2014 (AFIN 2014). The resulting time series describes the evolution of snow depth as a function of place and time between 2014-03-07 and 2014-05-16 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on the ice shelf. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow depth, because no initial readings of absolute snow depth are available.