343 resultados para VEGETATION HISTORY


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sporomorphs and dinoflagellate cysts from site GIK16867 in the northern Angola Basin record the vegetation history of the West African forest during the last 700 ka in relation to changes in salinity and productivity of the eastern Gulf of Guinea. During most cool and cold periods, the Afromontane forest, rather than the open grass-rich dry forest, expanded to lower altitudes partly replacing the lowland rain forest of the borderlands east of the Gulf of Guinea. Except in Stage 3, when oceanic productivity was high during a period of decreased atmospheric circulation, high oceanic productivity is correlated to strong winds. The response of marine productivity in the course of a climatic cycle, however, is earlier than that of wind vigour and makes wind-stress-induced oceanic upwelling in the area less likely. Monsoon variation is well illustrated by the pollen record of increased lowland rain forest that is paired to the dinoflagellate cyst record of decreased salinity forced by increased precipitation and run-off.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A high resolution marine pollen record from site GeoB1023, west of the northern Namib desert provides data on vegetation and climate change for the last 21 ka at an average resolution of 185 y. Pollen and spores are mainly delivered to the site by the Cunene river and by surface and mid-tropospheric wind systems. The main pollen source areas are located between 13°S and 21°S, which includes the northern Namib desert and semi-desert, the Angola-northern Namibian highland, and the north-western Kalahari. The pollen spectra reflect environmental changes in the region. The last glacial maximum (LGM) was characterised by colder and more arid conditions than at present, when a vegetation with temperate elements such as Asteroideae, Ericaceae, and Restionaceae grew north of 21°S. At 17.5 ka cal. B.P., an amelioration both in temperature and humidity terminated the LGM but, in the northern Kalahari, mean annual rainfall in the interval 17.5-14.4 ka cal. B.P. was probably 100-150 mm lower than at present (400-500 mm/y). The Late-glacial to early Holocene transition includes two arid periods, i.e. 14.4-12.5 and 10.9-9.3 ka cal. B.P. The last part of the former period may be correlated with the Younger Dryas. The warmest and most humid period in the Holocene occurred between 6.3 and 4.8 ka cal. B.P. During the last 2000 years, human impact, as reflected by indications of deforestation, enhanced burning and overgrazing, progressively intensified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Palynological investigation of the marine core, GeoB1008-3, from near the mouth of the Congo river (6°35.6'S/10°19.1'E), provides information about the changes in vegetation and climate in West Equatorial Africa during the last 190 ka. The pollen diagram is divided into zones 1-6 which are considered to correspond in time with the marine isotope stages 1-6. Oscillations in temperature and moisture are indicated during the cold stage 6. During stage 5, two cooler periods (5d and 5b) can be shown with an expansion of Podocarpus forests to lower elevations on the expense of lowland rain forest. Extended mangrove swamps existed along the coast in times of high sea level (stages 5 and 1).

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Palynological data of the marine core M 16415-2 show latitudinal shifts of the northern fringe of the tropical rain forest in north-west Africa during the last 700 ka. Savanna and dry open forest expanded southwards and tropical rain forest expanded northwards during dry and humid periods, respectively. Until 220 ka B.P., the tropical rain forest probably kept its zonal character in West Africa during glacials and interglacials. It is only during the last two glacial periods that the rain forest possibly fragmented into refugia. Throughout the Brunhes chron, pollen and spore transport was mainly by trade winds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Past changes in plant and landscape diversity can be evaluated through pollen analysis, however, pollen based diversity indexes are potentially biased by differential pollen production and deposition. Studies examining the relationship between pollen and landscape diversity are therefore needed. The aim of this study is to evaluate how different pollen based indexes capture aspects of landscape diversity. Pollen counts were obtained from surface samples of 50 small to medium sized lakes in Brandenburg (Northeast Germany) and compiled into two sets, with one containing all pollen counts from terrestrial plants and the second restricted to wind-pollinated taxa. Both sets were adjusted for the pollen production/dispersal bias using the REVEALS model. A high resolution biotope map was used to extract the density of total biotopes and different biotopes per area as parameters describing landscape diversity. In addition tree species diversity was obtained from forest inventory data. The Shannon index and the number of taxa in a sample of 10 pollen grains are highly correlated and provide a useful measure of pollen type diversity which corresponds best to landscape diversity within one km of the lake and the proportion of non-forested area within seven km. Adjustments of the pollen production/dispersal bias only slightly improve the relationships between pollen diversity and landscape diversity for the restricted dataset as well as for the forest inventory data and corresponding pollen types. Using rarefaction analysis, we propose the following convention: pollen type diversity is represented by the number of types in a small sample (low count e.g. 10), pollen type richness is the number of types in a large sample (high count e.g. 500) and pollen sample evenness is characterized by the ratio of the two. Synthesis. Pollen type diversity is a robust index that captures vegetation structure and landscape diversity. It is ideally suited for between site comparisons as it does not require high pollen counts. In concert with pollen type richness and evenness, it helps evaluating the effect of climate change and human land use on vegetation structure on long timescales.

Relevância:

60.00% 60.00%

Publicador: